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Schrodinger equation with a spatially and temporally random potential:
Effects of cross-phase modulation in optical communication
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We model the effects of cross-phase modulation in frequéacyavelength division multiplexed optical
communications systems, using a Salinger equation with a spatially and temporally random potential.
Green’s functions for the propagation of light in this system are calculated using Feynman path-integral and
diagrammatic techniques. This propagation leads to a non-Gaussian joint distribution of the input and output
optical fields. We use these results to determine the amplitude and timing jitter of a signal pulse and to estimate
the system capacity in analog communication.
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I. INTRODUCTION When one is interested in optimizing the design of a com-
munications system, it is often useful to characterize the
various mechanisms of signal distortion according to their
The ability to transmit information is ultimately limited physical origin in the system. This is not always the best way
by signal distortion. Information theor,2] quantifies the of classifying signal distortion from an information theoreti-
extent to which such distortions inhibit communication; it c@l point of view. A more convenient classification is to di-
was originally developed for the study of radio communica-vide signal distortions into additive and multiplicative noise.
tion or electrical communication along copper wires. In these! € Signal distortions in optical fibers may be classified in
cases the signal propagation is linear— the received signal &S mannel12]. It is the multiplicative noise that presents

a linear function of the transmitted signal. Distortion arisest '€ Main difficulty in understanding nonlinear channels. It

due to the addition of extraneous signal fluctuations, whicHIes behind some of the classic unsolved problems in infor-

propagate linearly alongside the original signal. These fluc-matlon theory[2]. It is to this aspect of the problem that

tuations mav come from noisv amolifiers or other CirCuitpath-integral and diagrammatic techniques are particularly
Y Y P suited. In the system studied in this paper, multiplicative

elements, or from cross-talk with other messages. Such lin; = appears as a random potential in a &tihger equa-
ear systems with additive noise are very well characterizeﬂOn

from an information theoretical perspective. The tension between additive and multiplicative noise is

In modern_ communication syst_ems, the S|t_uat_|on IS ratheE;imilar to the tension between disorder and interactions in
more complicated. The very high transmission rates—

) . ) Y . many-body physics. In the latter case, the consequence of
partlcu[arly n op_tlcal communication— require that thg this tension is that a full analytical characterization is not
transm|SS|on.me.d|um be op_erated In regimes where t_he SlgE)'ossible. Instead, one must resort to approximation schemes
nallpropagann IS substantlally nonlina. Thgse nonlm.- hat are appropriate under different regimes of system param-
earities can lead to a variety of new mechanisms of sign

distortion [4—91 and t difficult to ch teri ters. It is likely that for the same reasons one will be forced

IS (I)rt_lon”[ Tl_g ar;] alr_e .(: gr:hvery dl |ctu d'o c ?rac el_rlze to use similar approximate schemes to study the propagation
analytically. 1his nas limited the understanding of noniinear signals in nonlinear media. Physicists have worked hard to
channels, particularly from an information theoretical per-

. develop such schemes and some of them are directly appli-
spective.

Faced with these difficulties, there are two ways in whichCable to the study of nonlinear signal propagation; for ex-

b de. O his t : detaild ple, Falkovictet al.[13] have used the theory of optimal
progress may be made. Lne approach IS 1o pertorm detaligfi, -1,ation to understand the fluctuations in soliton amplitude
numerical simulations of the underlying partial differential

.and timing that occur in optical communication. In this pa-
lBer, we use Feynman path-integfd¥] and diagrammatic
techniqueg15] in order to understand some of the effects of
onlinearity upon optical communication. Most of this paper
will concentrate upon characterizing the propagation of light
the fiber. Towards the end of the paper, we will harness

A. General

the literature. However, it is very difficult to use the results
of such analyses to understand the information theoretic
aspects of communication in non-linear media. An alterna
tive approach is to harness physical understanding of th
signal propagation to motivate simple phenpmenologlca his characterization to understand some information theoret-
models that capture some aspects of the nonlinear propaga.;

. . . Jical aspects of the problem.

tion, but which are nevertheless analytically tractable. This
approach has been used to understand a number of aspects of
nonlinear propagation in optical fibefd—9]. Only recently

have such approaches been applied to study the information In this paper, we will consider some of the effects of
theoretical aspects of the probldi0-13. nonlinearity upon communication using frequency division

B. The wavelength division multiplexed optical fiber
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multiplexed optical fiberg3]. Optical fibers have an enor-
mous transparent bandwidth. It is far beyond current elec-
tronics to modulate at these frequencies. In order to utilize as
much of the bandwidth as possible, it is divided into a num- Standard Fibre DCfibre | Amp x10
ber of nonoverlapping frequency bands, or subbands, each of

which is modulated independently. This is called frequency 80km 16km
division multiplexing or alternatively wavelength division
multiplexing (WDM).

Light propagating in a WDM optical fiber experiences
several sources of signal distortion and nonlinearity. The firsmodulation instability[9]. When the incoming frequency
of these is due to dispersion; the different frequency compoeomponents are in different subbands and scatter back into
nents of a signal travel at different velocities along the fibertheir original subbands, the effect is called cross-phase
leading to a spreading of a signal pulse. This spreading is modulation(XPM). This is the effect that we will concen-
linear operation, however, and does not reduce the capacityate upon here. We will show explicitly that this leads to
to communicate information. The effects of disperstmuld  multiplicative noise— to a spatially and temporally random
be taken into account by a suitable linear transformation opotential due to the signal in the other subbands. We will find
the received signal during processing. Usually, however, disa superdiffusive spreading of the pulse shape and a superdif-
persion is accounted for by introducing dispersion compenfusive spreading of arrival times. Finally, the effect of the
sating elements into the transmission link; spans of standarderr nonlinearity, when all of the incoming and scattered
dispersive fiber are interleaved with spans of dispersion comfrequency components lie in different subbands is known as
pensating fiber in which the sign of dispersion has been refour-wave mixing (FWM). From the point of view of the
versed, so that more slowly moving frequency componentsignal in any particular subband, it has an identical effect to
catch up with the faster moving components. additive amplifier nois¢16].

As light propagates in an optical fiber, some of it is scat- A complete WDM optical communications system con-
tered out of the fiber by Raman scattering leading to a loss ddists of a series of spans of standard, dispersive fiber inter-
signal power. This is compensated for by the periodic inserteaved with dispersion compensating fibers and loss compen-
tion of short spans of lasing fiber. As the light passes througlsating amplifiers. The precise ordering of these elements is
the lasing fiber, it is amplified by stimulated emission. It is known as the dispersion map. The performance of the system
impossible to avoid a certain amount of spontaneous emiszan depend quite sensitively upon this dispersion map. How-
sion in this process. This is amplified alongside the signakver, for concreteness, we will restrict ourselves to one par-
and provides a source of additive noise called amplifiedicular map, shown in Fig 1.
spontaneous emissidASE) noise. Our approach will be to calculate Feynman path integrals

Although we take full account of the effects of dispersion,describing the propagation of light in a single subband, tak-
dispersion compensation and ASE noise in our analysisng account of scattering from signals in other subbands
these are not the main focus of this work. A system with onlythrough XPM. Green’s functions for this propagation must
these effects is a linear system with additive noise. This idbe averaged over realizations of the signal in other subbands.
precisely the type of system understood by Shannon man@reen’s functions for propagation in the optical fiber turn out
years agq1]. The additional aspects of optical communica-to be Green’s functions of a Schiioger equation with a
tion are the nonlinearities present in the propagation of lighspatially and temporally random potential. The main calcu-
in an optical fiber. The most important of these nonlinearitiedations in this paper are the evaluation of the single- and
is the optical Kerr nonlinearity, by which the refractive index two-particle Green’s functions of this Scliinger equation.
of the fiber depends upon the intensity of light in the fiberThis calculation is similar to calculations carried out in two
[3]. other contexts: Turbulent flow or the growth of interfaces

The Kerr nonlinearity causes scattering between differentnay both be described by the Kardar, Parisi, and Zhang
frequency components of light in the fiber. Two incoming equation[17—-19. This may be mapped to a diffusion equa-
frequency components scatter into two outgoing frequencyion with a spatially and temporally random potential. Cal-
components. In WDM systems the effects of the Kerr non-culating the quadratic statistics for these processes and aver-
linearity are grouped according to the origin of the frequencyaging over the turbulent flow or noise in the growth process
components which scatter off one another. When the incomis very similar to calculating the two-particle Green'’s func-
ing and outgoing frequency components all lie in the samdion in our problem. In particular, short-range temporal cor-
subband, the effect is known as self-phase modulatiomelations allow the calculation to be reduced to an effective
(SPM). It is this nonlinearity that is responsible for the pos- single-body problem for which the Feynman path integral
sibility of soliton propagation within a subband. The combi- may be readily calculated. We will find the same structure in
nation of SPM and ASE noise leads to several mechanismsur solution to the present problem. The second problem to
of signal distortion: fluctuations in the amplitude and arrivalwhich our work bears similarity, is the calculation of Green'’s
times of soliton pulses, known as Gordon-Haus jitté}; function in the presence of a quenched random potential
nonlinear amplification of the phase noigg; and, depend- [15]. In this context, it is usual to truncate the diagrammatic
ing upon the sign of dispersion, a nonlinear instability ofseries for the single- and two-particle Green’s functions to
amplitude fluctuations about a constant signal called thé¢he Born and Ladder series, respectively. Here we will find

FIG. 1. Schematic diagram of an optical fiber system.
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that this truncation is justified by the short-range temporahonlinearity. Dividing the electric field into its components
correlations of the random potential. in each subband of the WDM system, the low frequency
Our approach contrasts with other methods of includingenvelope of the electric field in thé subbandE;(z,t), is
the effects of XPM in WDM system{$], in which individual  given by
scattering events between soliton pulses in different sub- . o
bands arge considered. Our results apre very similar to those 19,B1(2,0) = (Bo —10)B(Z, ) +V(Z.DE(ZD),
obtained for Gordon-Haus jittd#], although of a different
physical origin. — , 2
Before going on to a detailed calculation, let us first state Vizb) 2yj2# @Dl @
our results and the physics underlying them. As a signal
pulse propagates along a particular subband it passes through writing down this expression we have neglected self-
regions of higher and lower intensity of the total signal in thephase modulationy|E;(z,t)|?E;(z,t), and four-wave mix-
other subbands. This causes the pulse to speed up and slovg, y2; .iE} (z,)E«(z,t)Ei(z,t). This neglect of self-
down due to the Kerr nonlinearity. Since the signals in thephase modulation and four-wave mixing may be justified on
other subbands are unknown to the users of any particulawo grounds. First, there are regimes where numerical simu-
subband, this speeding up and slowing down of the pulse hastion confirms this to be a good approximatidr6]. Study-
a statistical uncertainty. The result is a diffusive spreading ofng the system in the absence of the effects of self-phase
the phase velocity and a corresponding superdiffusiveénodulation and four-wave mixing allows us to deduce the
spreading of the distribution of pulse arrival timgsT?)  effects of XPM. Our aim is to determine what constraints are
= L3 (to see this requires integrating the diffusively spreadingmposed upon communication by these effects. Other sources
phase velocity over the length of propagajiomhis is the of signal distortion will impose additional constraints in a
main result of our calculation. The functional form is very real system, but these are not of direct concern in this paper.
similar to that obtained previously for Gordon-Haus jitter Equation(2) corresponds to a nonlinear Sctiager equa-
[4], although its physical origin is slightly different; it is due tion with a spatially and temporally random potential due to
to XPM rather than a combination of SPM and ASE noise. Innonlinear interaction with the signals in the other subbands.
addition to the uncertainty in the pulse arrival time, the pulseThe effects of loss in this system may be accounted for by
shape itself is distorted due to the effect of XPM; since theyusing rescaled electrical fields that maintain their amplitude
travel at different speeds, the different frequency componentguring propagationE.¢s;(z,t) =e*’E;i(z,t). The propaga-
of the pulse sample slightly different portions of the signal intion of these rescaled fields is described by &).with an
the other channels and arrive at slightly different times.exponential rescaling of the strength of nonlineari;
Therefore, the pulse width itself will show a superdiffusive = y(1—e™%)/aL, whereL is the length of a single span of
spreading due to the effects of XPM. The effect of XPMfiber, and without the loss term proportional &0 Hence-
upon the pulse power is much weaker than its effect upororth, we will assume the use of these rescaled fields and
pulse timing. The processes leading to fluctuations in puls@rop the subscript&ff” for brevity.
power are of higher order in theveak nonlinearity. The We follow Ref.[10] and model the stochastic potential by
timing errors induced by XPM cause the pulse power toa Gaussian distribution with short-ranged correlations in
spread over a larger interval leading to the possibility ofspace and time; the signals in the separate subbands are sta-
overlap between adjacent pulses. This intersymbol interfertistically independent and have short-ranged temporal corre-
ence allows timing errors to be converted into amplitudéiations on time scales of order 1/bandwidth. Relative disper-
errors. Numerical simulation, however, shows that the domision of signals in different subbands leads to short-

nant contribution to amplitude errors comes from SPMd],  ranged spatial correlations, which may be approximated

the effects of which are not studied here. by a delta function if the dispersion is sufficiently large.
The strength of the potentialy=[dz(sV(z,t)SV(0t))
Il. THE MODEL =[(yP)?/(2BA 6W)]In[n/2], is obtained by summing the

. _— : S . contributions fromn. channels with separatiodW, band-
The propagation of light in an optical fiber is described byWidth A, and signalc poweP. The IogarFi)thmic dependence

Maxwell's equations with a dielectric constant dependentupon the number of channels is due to the suppression of

upon the energy density of the electromagnetic field. Th%he effects of widely separated channels by dispersion
optical fibers used in communications systems support onIElo] In the following section, we will often write

one transverse mode. Expanding the Maxwell’s equation fo . -
A - (8V(z,t) 5V(0,0)) =27/ AS5(t) 8(z), with an explicit &
the low frequency envelope of the electric field and taklngfunction in time. This simplifies our calculations and eluci-

the long wav_eleng'gh limit, one obtains a nonllne_ar S_ehro dates which contributions are most important for propagation
dinger equation with the roles of space and time inter- ial with sh | lati tis i
changed 3] in a potential with short temporal correlations. It is important
' to realize, however, that the potential and signal are both
iazE(z,t)=(,6’(9t2—ia)E(z,t)— y|E(z,H)|?E(z,t). (1) band limited, so that the correlations are not striélfunc-
tional. We account for this by regularizing tléefunction of
The term proportional tax on the right-hand side of this zero argument t&(t=0)=A/27.
equation describes the loss of optical power from the channel The system considered here consists ok 180 km stan-

and the term proportional tp encodes the effects of the Kerr dard fiber followed by 16 km dispersion compensatidg
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fiber and a loss compensating amplifi@the input signal has formed using a simplified dispersion map consistingNaf
power, bandwidth and channel separatiBs=5 mW, A standard spans followed by dispersion compensating
=10 GHz, andsW=15 GHz, respectively. The standard spans and adding Gaussian white noise at the receiver.

(or do fiber loss, nonlinearity, and dispersion parameters We now use this simple model of the system to calculate
are «=0.048(0.115) km?*, y=1.2(5.1) W'km*, andp  the effects of XPM upon the input and output signals. We
=11.0(-66.9) p€km~ 1. ComparingyP/« for the standard shall refer to this as the input-output statistics for brevity
and dc fibers gives a measure of their relative strengths dfom now on. The quadratic statistics are given by

nonlinearity. The power entering the dc fiber is a factor of (EX(DEin(t))y=Ps(t—t"),

~50 lower than that entering the standard fiber. This, com- . , ,

bined with the greater loss in the dc fiber, leads to an effec- (En(DEoudt"))=P(Gu(t,t"),

tive strength of nonlinearity- 150 times greater in the stan- (EX (D Eou(t))=(P+N)8(t—t") (4)
dard fiber. We ignore nonlinearity in the dc fiber in our ot ou ’

analytical work. It may be included in precisely the sameand the quartic statistics are given by

way as in the standard fiber and does not lead to any quali- (S| Ein(D)|26]Ein(t))[2) = AP28(t—t)/2am,

tative change in our results. Three important lengthscales

may be determined from these system parameters; thle total (SlEin(D[?8]Eou(t)[2)=P2G (t—t"),

fiber length L;,;=10x80 km, the nonlinear lengthy (8| Equi( V)28 Equt) | =A(P+N)28(t—t')/2m. (5)

=223km, and the dispersion length p=(BA?) !

=747 km. The response of the system is completely deterfhe angular brackets indicate averages over the signal in the
mined by the ratios of these three length scales. subband of interest, the signals in the other subbands, and the
amplifier noise.(Gy(t,t")) is the average of the dispersion
compensated, single-particle Green’s function over the po-
tential (or realizations of the signal in the other subbgnds

The output electric field,,(t), after propagating alonga and Gg(t—t")=(|G(t,t")|?) is the average of the two-

single span of standard fiber, may be expressed in terms ®Rrticle Green’s function over the random potential. The in-
the input electric fielcE;,(t) as put signal is assumed to have a Gaussian distribution with

powerP and the amplifier noise to have a Gaussian distribu-
, , , tion with powerN. We have used the unitarity of the single-
Eout(t):f dt’G(t,t")Ein(t") +n(t), () point Green’s function for a particular realization of the po-
tential in deriving Eq$4) and (5); G(t,t)=1. The delta
function §(t—t’'=0) has been regularized as discussed in
Sec. Il to allow for the fact that the subband has a bandwidth
A; S8(t—t'=0)=A/27w. The averaged Green’s functions
(G4(t,t")) andGj(t—1t') are invariant under temporal trans-

Ill. INPUT OUTPUT STATISTICS

wheren(t) is additive Gaussian white noise, with variance
N, representing ASE noisé(t,t’) is the Green'’s function of
Eq. (2) for propagation fronz=0 at timet to z=L at time
t’, with a fixed realization oV (z,t). More generally, we C i ,
will use the notatiorG(z,,z,:t;,t,) to indicate the Green's |ations and are therefore, functionstoft’.
function for propagation from=t;, z=z; to t=t,, z=2,. The statistics “embogled by Eq,$4) 2ar_1d (5 are non-
Using this notationg(t, ,t,)=G(0,L;t,,t,). Suppression of Gaussian, sincejq(t—t )#[{|Ga(t,t'))|* in general. The
one of the spatial indices implies propagation fram O; corrections to Gaussian statistics are given by the vertex cor-
G(z:t, 1) =G(0,zty ,t,). Similarly, G(z,t)=G(0z,0,). Itis rections to the two—parucle Green’g functlon. Alternatively,
particularly important to note thag(ty,t,)#G(t,—t,), as ©ON€ may say _that linear propggatlon in the'presence of a
would be the case for a static potential. random _potentlal leads to_nonllnear propagation on average.
Dispersion compensation is included by replaci{g,t’) Calculation of_the quadratic ar_wd quartic statistics in terms _of
in Eq. (3) with a dispersion compensated Green’s functionCreen’s functions allows a simple characterization of this

G4(t,t'). This is obtained by convolving the Green's func- nqnlinearity. ]n the following section, we will give an ex-
tion for the standard fibe€(t,t'), with the Green’s function plicit calculation of the averaged Green’s functions and fol-

; ; s - , low this in the subsequent sections by a discussion of their
for the dispersion compensating fib t,t'); t,t 1 2 ) _
=rfdt”g |spp(tst|”)g(t” t"; 2 I r?(t It,?e’oﬁg(s tfze gg;()pos)ite consequences for optical communication. The quadratic sta-

com ’ ’ . com 1 1

sign of B to G(t,t') and describes propagation with no po- tigtic; will be useful fo.r our cﬁs_cussipn of coherent commu-
tential, V. nication anq the quartic statistics yv|ll be useful for our dis-
Propagation along a series of interleaved standard and dssion of incoherent communication.
spans is modeled by convolving a string of dispersion com-
pensated Green’s functions. This convolution is independent
of the ordering of the Green’s functions and the effects of The average Green’s functio§) andG" may be calcu-
XPM are, therefore, independent of the dispersion map. Redated from their Feynman path-integral representat{das.
systems are sensitively dependent upon the choice of théwe assume that the stochastic potentialSifunction cor-
map due to the effects of SPM, which is ignored here. Fi+elated in time, these path integrals may be evaluated in a
nally, due to the unitarity ofj4(t,t"), adding ASE noise at closed form. These results correspond to resumming the
each amplifier is equivalent to adding Gaussian white nois®orn and ladder seridd 5] in the diagrammatic expansions
at the receiver. Analytical calculations may, therefore, be peref (G) and G", respectively. These series may be used to

IV. CALCULATIONS
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approximate the effects of a naffunction correlated poten- TN
tial. The diagrams that are neglected in this approximatioNe——— = + ! \
are small for a potential with short-ranged temporal correla- FIG. 2. Born series fo(G).

tions; the use of @-function correlated potential is a calcu-
lational tool that emphasizes the range of validity of thiscross, thus restricting the contributing diagrams to the Born
approximation. In the following, we will calculate equations Series. Figure 2 shows a symbolic representation of(Eq.
of motion for(G) andG" from their path integrals, under the after multiplying on the left by,. The dashed line indicates
assumption thaV is & function correlated in time. We will propagators o¥, the solid line indicategj,, and the thick
show how the solutions of these equations correspond to thgolid line indicateg G). This diagram is to be interpreted in
resummed perturbative, ladder and Born series. Finally, théeal space or momentum space in the usual way. The Green'’s
average Green’s functio&}) andG" will be calculated al- ~ function in frequency and momentum space is
lowing for the band limit of the subband and potential due to (N R -1
the other subbands. (G(p@))=i(p= ™ +in/2) ", ®
wherep is the wave vector conjugate and w is the an-
A. Single-particle Green’s function gular frequency conjugate tb For later calculations, it is
Recalling that the roles of space and time have been inL-!SQfUI to haye_(g) Ina mixed, position and frequency nota-
; . . . tion, where it is given by
terchanged here compared with their more familiar roles in
guantum mechanics, the single-particle Green’s function is (G(z,0))=exd — (n/2—iBw?)z]. 9
written in the form ] ) o )
Dispersion compensation is achieved by temporally convolv-

<g(L,t)>=< jt(L)tDt(z)ex;{ _ dezl—(aZt(z))z ing G(L,t) for the standard fiber with that of the compensat-
t(0)=0 o 2B ing fiber (or alternatively multiplying together the position
. and frequency space Green’s functiprignoring nonlinear-
_if dzM(z,t(2)) > ity in the compensating fiber, we findG.,mdL,t)
0 =Gg (L,t). The dispersion compensated Green’s function is
H)=t L then given by
B Lm:f“aex[{ B fo dzgglot 2] (Ga) (L =e 725(1). (10)

17l (L On average, therefore, the effects of XPM nonlinearity sepa-
— _f f dzdZ(V((z.t(2))V(Z' ,t(Z)], rate from those of dispersion. Moreover, the effect of XPM is
2)oJo to dephase the propagating electric field.

6
© B. Calculation of G"
where the angular brackets denote averages over realizations The calculation ofG" from its path integral proceeds in a

of V. We have carried out the average oXiin order 0 yery similar manner to the calculation ¢6). After writing
obtain the second line, assuming thas a Gaussian random  §yown the path-integral representationdf, we perform the

variable. o _ average ove¥ and deduce an equation of motion &l by
Taking the derivative of Eq6) with respect td. [14], we differentiating with respect ta. This differential equation is
obtain the following equation of motion fdG): local in time when the correlation function ¥fis a temporal
B, 6 function. The equation of motion is most easily solved in
("T%‘%)(g(bt)) the frequency domain, where it is recognizable as the re-
summed ladder series. As before, the set of contributing dia-

L (= grams is restricted due to the requirement that the propaga-
:5(L)5(t)+fo f_mdt’dz(V(L,t)V(z,t’)) tors of V may not cross. We will first of all derive an
expression forG'"(w,q) in the absence of dispersion com-
X{(G(L—=z,t—t")¥G(z,t")). (7)  pensation from its path-integral representation. We will

verify that this result is identical to that obtained by sum-
This equation is local in time for a stochastic potential thatming the ladder series of diagrams. In fact, closed expres-
is & function correlated in time; (V(z,t)V(0,0))  sions forG"(L,t) are most readily obtained by resumming
=(2mnlA) () 8(z). The solution of this local equation of this series directly in the length and frequency domain. We
motion is (G(L,t))=e""2G,(L,t), where Go(L,t) is the  explicitly carry out this resummation to obtain expressions
Green’s function of the operator—(iﬂatzl2— d,.), i.e., the for G"(L,») and its dispersion compensated counterpart
Green’s function for propagation in the absenceVofThis g'd'(L,w).
result was first obtained in Rdf10]. Equation(7) may also We will first derive a path integral and equation of
be obtained diagrammatically by resumming the Born seriesnmotion  for the Green's function, G"(L;7y,7))
it is nothing but the Dyson’s equation f¢g(L,t)) obtained =(G(L,7;)G*(L,7,)). In the end we will be interested in
by resumming this serigd5]. The temporab-function cor-  G'"(L,t)=G"(L;r,=t,7,=t). The path-integral representa-
relation of V implies that the propagators &f must not tion of G" is
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G"(Ls7y,m2) =(G(L,m)G* (L, 7))

m(L)=711.72(L) =17 . ((7z7'1)2 . (‘927'2)2
= D71(z)D71,(z)ex dz i —i
<Ll(0)=o,72(0)=0 m1(2)D7(2) ;{f ( 2B 2B

2 2
Drl(z)Drz(z)eX[“' dz(i ((Z;l) —i(ﬁ;’;) ”

—_—
[E—)

Xexr{ _ %f dZ —iV(z,7(2))+iV(z,75(2))]

le(L):TlnTz(L):Tz

71(0)=0,75(0)=0

Xexpg — %J dzdZ{V(z,7(2))V(Z',1.(2")))

Xexpg — %f dzdZ(V(z,m5(z))V(Z',75(Z")))

X exp f dzdZ(V(z, Tl(Z))V(Z,,TZ(Z,)»} (11

The average oveVv has been carried out in passing from the This equation is most easily solved by first changing coordi-
penultimate to final line of Eq.11). The equation of motion nates to the mean timeés= (7, + 7,)/2, and time difference,
for G" is derived by differentiating both sides of this equa- T=(r;— 7,)/2. After Fourier transforming in space and time
tion with respect td_. The resulting differential equation is we find

local in time whenV hasé-function correlations in time. It is

slightly easier to make the assumption of temporally _ B ) "

S-function correlations foV in Eq. (11) before differentiat- —1{ 4= 50Q+i750) |G7(q;w,02)

ing. The path integral then reduces to

_ 27T7] dQ Il . Q
=1+ — ZG (0;0,Q), (14)

n(L) =11, 72(L) =72 A
gII(L;TerZ):f D71(2)D7,(2)
71(0)=072(0)=0 where w and Q) are the angular frequencies conjugatet to
(8,7)2  (9,72)? andT, respectively and is the wave-vector conjugate to
xex;{f dz(i 5 —i 5 Equation(14) is equivalent to the ladder series shown in Fig.
B B 2. In order to make this correspondence clear, the effects of
nonlinearity have been divided into two parts; the term pro-
. (120  portional to7 on the left-hand side of Eq14) takes account
of self-energy correction to the single-particle Green'’s func-
tion and the term proportional tg on the right-hand side
This result is very similar to that obtained in the analysis oftakes account of vertex corrections. Following the usual con-
the diffusion equation with a spatially and temporally ran-vention, we denote the solution of EG4) in the absence of
dom potential[17]. In that case, the path integral for the vertex corrections byI(q;w,Q)=—i(q— BwQ/2+in) 1.
square of the wave function reduced to that of two interactOne may check by direct substitution @(q,»)) from Eq.
ing random walks. Here the path integral B} reduces to (8) that I1(q;w,Q)=[dp/27(G(q+p, 0+ Q))(G*(p,Q)).
that of two interacting Schobnger particles, or waves, Finally, using the notatioll(q,w)=[dQ/27II(q;w,Q),
propagating in opposite directions. Differentiating E§2)  the solution of Eq(14) is
with respect td., we obtain the following local equation of

21
- UT &(my(2)— Tz(Z)))

motion for G": G'(qw)= Zl](q,w)
(g, w)
p 1 A (q,w

(9|__|§((9§1_(9?.2)+77 g“(L;TI!TZ) 27777
o =H(q,w)(1+ TH(q,w)
:5(L)5(7'1)5(7'2)+77?5(71_7'2)g”(|-§7'1,7'2)- 2

T

2 2
+ T H(q,w) +- -

(13 ’ 19
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standard fiber d.c. fiber
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1
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1
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1
]
1
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FIG. 3. Ladder series fog".
() o,
which corresponds to the ladder diagram shown in Fig. 3. \ 2
The modification to these results due to dispersion com-
pensation is not quite as simple as the modificatioGn

Although it is possible to derive a path-integral expression(ziA“)zom“"““::::::.i 2L
for Gl akin to Eq.(13), it is easiest to derive the dispersion A S |

-

compensate@" using diagrammatic perturbation theory in 1 vw’\j
the length and frequency domain. The appropriate diagram: \ +
matic series is shown in Fig. 4. The result of summing this Ti(w, x) I(w,y-x) ' Hg®,L-y) ;
series is

I 27y (L
Ga(L,w)=II4(L,w)+ Tf dXIT(X,w)IT4(L — X, )
0 FIG. 4. Position-space diagrammatic seriesG(L,w).

2777] 2 L X
+ (_A ) fo dxfo dyLI(X,0)H(y,®)Hg(L grammatic calculation, but allow for the band limitation\6f
in calculations of internal frequency integrals.
—V,0)+ .... (16) Let us illustrate this by explicitly calculating the second-

order term in Eq(16). This is given by
I1(z,w) is given by

L X
M(z,0)= f dz%@(z,w'+w/2)><g*(z,w’—w/2)> fo dXJodyH(X’“’)H(y"")H“(L_y"")

dw' . JLd fxd f dwl dwz dw3
:efvzfﬁeww'wz (17) =, Y] o 2. 2.

and I14(z,w) is the dispersion compensated analogue of Xexflifolws = wx)x+ifo(w;—wy)y]

I1(z,0), given by A3 [mpeAL X sinX sinY
| e | ax [ Ta 2R 2
dw' 2’7T 0 0 X Y
— _ ! o3 !
Hd(z,w)—f o (G(z,0" + wl2))G5 (L, 0’ + w/2) AV 1/SIX]
=|>—| Le " 5| —— : (19
X{(G*(z,0' — wl2))Go(L,0’ — w/2) 2m 2\ X X=mBwAL
:e—mf Meiﬁw’w(z—L)_ (18  Where Si[X]=f3dusinu/u. We have carried out the fre-
2m quency integrals in passing between the second, third, and

. i fourth lines. The integration variables have been changed
1l
The calculation of7" proceeds by substitutind 4(z,») and from y, @y, andws t0 Wy, ws— @y, andw,— w,. Integra-

H(ZH“;) mtofEI?.(lG()j, gartr%/ Ing tOUt trlle frequlencyir:nteg(;a:cl_s ITI tions have been carried out over the domainrs\/2
o e oo o o e S Sz 2 0=, h fs! corespondng o e
t# Ing d loutl t tak th‘ ylt? lt"hbandlimitation of the signal in the subband and the second
IS proc;e ure, one tmus | a_l?hcabre %Vﬁr it ?. SUPF;C;L or bgnd third to bandlimitation of the stochastic potential leading
\l;al;’llgui?n rﬁqu?rr:c%/ tlr? egrr]a Sl' ; ff ann imi ?rlio?j g € Shuin_to a restriction on the transfer of frequency at each vertex.
a P esl at the angular frequency carried by each in- Calculating each term in the series in this way and resum-
ternal Green’s function must lie betweenzA and + 7A. ; : s
. . . . ." . ming, we obtain our final result
Carrying out the frequency integrals with this restriction
leads to very complicated expressions. An alternative ap- ,

- s . . A S X]
proach, which yields much more manageable expressions, is Gh(L,w)=s—exg —7L| 1— ——
to take into account the fact that the stochastic potential is 2m X
not strictly 6 function correlated in time, but is band limited
to lie between— A and + 7wA. We use the fact thaf has  for dispersion compensated propagation. The Green'’s func-
short-range correlations in time to justify neglecting termstion for uncompensated propagation is calculated similarly
other than those of the Born and ladder series in our diareplacinglly with IT in Eq. (16). The result is

(20

X=mBwAL
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0 0 sinX proximation within a Martin-Siggia-Rose field theory for this
GHL,0)=G4(L,0)~— : (21)  propagation to obtain a full joint distribution of amplitude
X=mpoAl and timing errors. This work shows in a particularly trans-

. . . ) .__parent way, the connection between the method of optimal
The prefactor of siX/X describes the dispersive spreadlngfluctuations in field theory and large deviations in statistics.

of a pulse propagating in the absence of nonlinearity. ) . . .
' g . . Here we use Green'’s function techniques to consider the con-
The distortion of the pulse due to XPM is described bytribution of XPM to jitter. Despite its different physical ori-

1l . _—
Go(L,@). Therg are .tWO |mporte;nt limits of Eq20). At gin, the resulting jitter has a broadly similar dependence
small frequencies, BX]/X—1—X“/18. As a consequence Gordon-H -

G"(L,w) tends to a Gaussian of width{w?)=2mA upon system parameters to Gordon-Haus jitter.
N . , . eff In principle, the output for an arbitrary input pulse shape
=(3A/m) yLp/ nlio. The interpretation of this width as an oy he calculated, accounting for the effects of XPM, in

effective bandwidth will be discussed below. At large fre- o ¢ of Green's functions for propagation along the fiber.
quenciesGq(L,w) tends to a constant. These limits imply the ampiitude and timing jitter may then be obtained by

“ . . .
thatG 4(L,t) has Gaussian tails at large times and approacheg,ing appropriate averages. This calculation may in practice
a é function at short times. We will discuss the CONSequUeNces oye rather cumbersome. However, the functional depen-

of these results for communication in the following sections.dence of the jitter upon system parameters is expected to be
broadly independent of the input pulse shébe magnitude
V. AMPLITUDE AND TIMING JITTER of the jitter will show a weak dependence upon the pulse
shape. For simplicity, therefore, we present approximate ex-
- : . ; o pressions for the amplitude and timing jitter due to XPM, by
fvtvaglsgﬁc?; tg?evevr?sl\?uonpcgicoarisflﬁirtms:[zr%stﬁfel;[‘(snlfc;r\:ﬁf_ sgs_considering the output for constant and delta-function inputs,
P ) 9 respectively. The simple expressions obtained in this way

tion, we shall use these results to discuss the effectct of XPI\éemonstrate the functional dependence of the jitter upon the

upon communication. . : :
. X . . system parameters. In particular, we find that the variance of
First, we discus two operational measures of the effi- Y P P

. ) T . . arrival times is proportional ta.3, whereas the amplitude
ciency of an optical communications system. Our discussio

. ; X . ; ) jjtter is largely independent of XPM. These functional depen-
will be quite brief, since these considerations are not Centr"’i(]jences are the same as those due to Gordon-Haus jitter al-

to the main message of this paper. Nevertheless, it is impor;

' though the physical origin is somewhat differ¢at.
tant to demonstrate that analytical results such as &8. 2 S
and (21) can be used to enhance understanding from this Timing jitter may be found by considering the response to

an input 6 -function in time. A real signal pulse is band

o.peratio.nal perspectivg. A common way O.f characte_rizinqimited but it may be thought of as being made up of many
signal distortion in optical communications is by amplltude5 functions. The use of & function input allows us to cal-

and timing jitter. These measures of system performance are ; A : .
e - o e : culate the functional form of the timing jitter in an analyti-
specific to digital communication. A digital message is madeCaII tractable wav. The dependence of the resulting iitter
up of a string of pulses or marks representing 1's, and spaces y - aep ng |
. ' Upon system parameters is expected to be broadly similar for
representing zeros. As a pulse propagates along a noisy chaft;

nel, it speeds up and slows down in a random way leading tE:alrbitrary input pulse shapes. Without XPM, the output elec-
a distribution of arrival timegdefined as the centroid in time ric field resulting from a d-function input is Eou(t)

e . =Gy(t)e<4(t) and the modulus of the electric field is given
of the power distribution at the output the receiver known 5 5 :
as timing jitter. Similarly, the total power of the pulse fluc- by [Equ(t)|*=|Ga(t)|* &(t). Introducing XPM broadens

tuates leading to a distribution of the amplitudes of the re—thls response. Different frequencies making up the pulse see

ceived pulse known as amplitude jitter. The distributions of? slightly different stochastic potential and arrive at slightly

the amplitude and timing fluctuations need not be indepenglfferent times. Since the signals in the neighboring sub-

dent[13]. In fact, the terms amplitude and timing jitter are bands are unknown, this broadening leads to uncertainty in

often reserved for the variance in the amplitude and arrivafhe arrlva_l time. Averaglng the response té-dunction input
times of a pulse. This is the sense in which we shall use ver realizations of the signals in the other subbands, there-

. I} _ 2 H
these terms from now on. In addition to jitter, the shape ofore; We find thatGq(t) =(|G(t)|*) gives a measure of the

the individual pulses may be distorted during propagationfjiStribUtion of arrival times. Using this interpretation and the

We do not discus these distortions here. results of the preceding section on the calculatiorjg)f we
The effects of SPM and ASE upon the amplitude andfind (t?)=(2mA ;) ~2Liy7; XPM causes a superdiffusive
timing jitter of soliton, or solitonlike, pulses has been con-spreading of arrival times. This functional dependence of the
sidered in a number of works, starting with Rpf]. All of timing jitter upon the fiber length is identical to that found by
these works expand in small fluctuations— induced by thé€ordon and Haus for the combined effects of ASE noise and
additive ASE noise— about a soliton solution. Such analyseSPM [4]. Notice that this contribution to the timing jitter
lead to the conclusion that amplitude jitter is not very sig-arises entirely from vertex corrections to the two-particle
nificant and that timing jitter leads to drf dependence of Green’s functiong (t); if we ignore vertex corrections by
the variance of arrival times. This latter result is known asmaking the approximatio §j(t)=|(G4(t))|?> and substitut-
Gordon-Haus jitter after its discovery in Ré#l]. A recent ing Eq.(9), we find no contribution to the timing jitter.
work of Falkovichet al. [13] has used a saddle point ap- Using Eq.(3) to calculate the statistics of the output for

The results of Secs. Il and IV give the input and output
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inputs held constant &;,(t)=0 andE;,(t)=A gives an =-3 p(X)logp(x). If the logarithm is taken in base 2, this
estimate of the amplitude statisticka1 and O in the output gives the amount of information per letter in bits. One way to
bit stream[7]. For a zero input, the output has the sameunderstand this is to think of compressing a signal. Compres-
Gaussian distribution as the noise. For an input of constargion involves removing redundancy in the sigtal alterna-
amplitudeA, tively correlations between letterand so increasing the
amount of information per letter. In this way, a signal with
(Eout(1))1=A(G4(0=0)), higher entropy will carry a higher density of information.
When one attempts to communicate via a channel, each
(|Eoul®)[?)1=(A%+N)&8(0), letter, x, of the input signal will be received as some letter,
at the output. Allowing for the uncertainty in the transmis-
(8]Equd®(1) 8| Equd 2(1))1=A{|G4(@=0)|*) — 8(0)?] sion process, the output for an input, will be given by
) ) some conditional distributiorp(y|x). For an information
+N(2A"+N)5(0) theorist, this defines the channel of communication. For each
~N(2A%+N)8(0)2, (22) input Ietterl, the qqtput may take a range of valqes. _The en-
tropy of this additional spreading at the output is given by

where thes function of zero argument is to be understood asthe _conditional entropy; H(Y[X)=Zp(x)H(Y|X=x)
A/27=5(0) for our band-limited subband. The evaluation == Z,p()[Zyp(y|x)log p(yx)]. . .

of these results is outlined in the Appendix. The output for a When a sequence of letters is transmitted, the amount of
1 input is not Gaussian: a Gaussian fit (,,(t)); and information in common between the input and output, other-
(|Equ(t)|?)1 does not reproducés|Eqy|?(t) 8| Eoud 2(t))1. wise known as their ml_JtuaI mformatlon, is given by the total
These results also predict that the contribution of XPM to the2Ntropy of the output signal minus the additional entropy due
amplitude jitter is small. Equatiof22) depends upon the t© Signal distortion;

evaluation of(|G(w=0)|*), which we have not carried out

here. A full evaluation of this four-particle Green’s function [(X;Y)=H(Y)—H(Y|X). (23
would be required to give a full expression for the amplitude

. ; —0)[4) ~
J|:ttg;.|2>lf2,:h(;o(v6/()a2v etrﬁevxihipg%oézwjgﬂigu(gr’ ;k?gl/vg n<o| %(eap))en- When using a particular channel, the conditional distribution
dence upon X,PM. Corrections to this result arise from.p(y|x) Is fixed and the remaining freedom is in the choice of

higher-order vertex corrections to the four-particle Green’sInput distributionp(x). The idea is that if certain letters are

function and are small for weak nonlinearity. In particular, more distorted than others, it pays one to use them less fre-

these vertex corrections are of higher order than those th%gprﬂ);ﬂi\;e?hgofh%h it:lsutm Seia;];acraendlé(::?n '.Ir_]htgerﬁg(?rﬁzaqd
give rise to timing jitter. The predominant effect of XPM, . . np g y- Ih o

) . o ; . . 7 transmitted information density that can be achieved is given
therefore, is to induce timing errors. This conclusion is in . S . .

' by functionally optimizing the mutual information over the
accord with other works that have attempted to model theChoice of inout sianal distribution:
effects of XPM as a modification to the Gordon-Haus results P 9 '
for the soliton jitter[6]. In these works, individual scattering
events between solitonlike pulses in different subbands of the C=maxI(X;Y). (24
WDM system are considered and the amplitude jitter due to P()

scattering is ignored.

Shannon formulated these ideas rigorously and showed that
V1. INFORMATION THEORY this is not only an upper bound upon the rate of transmission
) . o ) of information, but it is also an achievable bound. A sum-
In this section, we will discuss how the input-output sta-mary of these basics of information theory may be found in
tistics calculated in Secs. Ill and IV may be used to construcief. [2]. The functional optimization in Eq24) is carried
general arguments about the maximum rate of communicasyt under the various system constraints, such as the average
tion via a WDM system. This is still an open problem. The gignal power. In fact, the only case for which there exists an
only systems for which exact answers about information cagxpiicit analytical solution is when the joint distributions of

pacity may be obtained are those with Gaussian input-outpyhe input and output signals are Gaussian. In this case, the
statistics. We will use the results for Gaussian systems t@apacity is given by

obtain lower bounds upon and approximations to the capac-
ity of the present, non-Gaussian system.

The ideas of information theory propounded by Shannon
are very much akin to the ideas of statistical mechanics. For
a signal made up of a sequence of lett@sfield values,
chosen from some alphabéir range of valugsone may
define a probability distributionp(x), for the probability
that a particular letter takes the value The amount When the signal is band limited, the corresponding expres-
of information per letter in such a sequence is givensions for the capacity per unit bandwidth, or the spectral
by the entropy of this distribution;H(X)=H[p(x)] efficiency, is given by integrating over frequency;

(XX)N(Y*y)
(X*x)  (X*y)
Y x) (y*y)

C=log (25
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X XYBY - w)
(XoX_w) (XEY_w)

(YaX—w) (YoY-w)

1
C= mf dw |Og (26)

[=:]

=]

The factor of 1/2r arises because is the angular frequency
conjugate td.

We are now in a position to use these results from infor-
mation theory, together with our knowledge of the quadratic
and quartic statistics of the WDM system to obtain a lower
bound and estimate of the capacity of the WDM optical com-
munications system. A rigorous lower bound on the capacity &
of a channel defined by a conditional distributig(y|x),
may be found as follows: The quadratic input-output statis-
tics are calculated for a Gaussian input distribution. A chan-
nel whose statistics are Gaussian and whose quadratic statis = § ;=" T iy
tics correspond to those of the actual channel, will have Power density (mW/GHz)
capacity given by Eq(26). This gives a lower bound on the
capacity of the actual channel. A proof of this is given in Ref.  FIG. 5. Spectral efficiency vs input power: Plots(af Eq. (26),

[10]. The basic idea behind it is that deviations from Gausssolid line; (b) Shannon formulag=log[1+P/N], short-dashed line;

ian statistics correspond to extra correlations in the noise thd¢) Ed. (29), long-dashed line.

the channel adds to the signal. These extra correlations allow ) ) ) ) _

one to make progress in determining which part of the rein the capacity for a particular power; increasing the signal
ceived signal is noise and which part is signal. Ignoring thes®0Wer relative to the noise power is productive up to a point,
correlations— as one does in the Gaussian approximation-2ut when the signal power is very large, nonlinear interac-
leads one to underestimate the extent to which noise may Jons between signals in the different subbands become the
removed from the signal and so to an underestimate of theominant mechanism of signal distortion. The appearance of
system capacity. Notice that since a Gaussian distributio" OPtimal power is a common feature of the effects of non-
maximizes the entropy for a fixed variance, any deviatiorfinearity. It occurs in the Gordon-Haus jitter of solitopé|
from Gaussianity will increase correlations. and in the nonlineafor Gordon-Mollenaugrphase nois¢5]

We are interested in two ways of using the WDM optical (See, for example, Ref12]). The second feature worthy of
fiber system. In the first case, both the amplitude and phasg®mment is the dependence of the capacity upon length at
of the electrical signal are used to communicate. We call this2rge distances. This is important, since it is for very long
coherent communication. In the second situation, only thélistance communication that propagation nonlinearities have
amplitude of the electrical field is used to communicate. Thighe most important effect. The Gaussian approximation to
latter case is more representative of current optical commueoherent communication gives a lower bound on capacity
nication systems. Coherent communication was consideredfat decays exponentially with length at large distances. We
by Mitra and Stark in Ref.10]. The quadratic statistics given d0 not expect this exponential decay to correctly reproduce
by Eq.(4) are combined with Eq26) to give the following the dependence of the system capacity, since it is in this limit

expression for the Spectra| efﬁciency in terms of the Sing]elhat .non'GaUSSian Cprrections to the inpUt-OUtpUt statistics

ing account of these non-Gaussian corrections is likely to

eotral efficiency (bits's Hz ')
-9

do change the dependence of capacity at large distances.

CZJ' 574 1091+ Pesi(@)/Neg( @) ], (27) Unfortunately, there exist no rigorous bounds on the ca-

pacity for incoherent communication in which the phase of
with the effective signal and noise powers given by the electric field is ignored. Nevertheless, expressions similar
to Eq. (28) can provide useful estimates of the incoherent

Pett(®)=P|(Gg(w))|%, capacity. One such estimate is obtained by fitting an approxi-

mate Gaussian distribution of intensity about its mean values

Neti(@)=P(1—[(Ga(®))[?) +N, (28)  [given by Eq.(4)] to the quadratic statistics of intensity given

by Eq. (5). The capacity of the channel with this Gaussian
‘distribution is an approximation to the capacity of the actual
channel. It is given by

respectively. This result is a modification of the famous Sh
annon[1] result for the capacity of a linear channel with
additive white noise, allowing for the conversion of signal
power to noise power by scattering from signals in the other 1 r do
subbands. The single-particle Green'’s function calculated iﬁ*z oA
Sec.IV,(Gy(L,w)xexd —consx P2L] is substituted into Eq.

(28) to obtain the functional dependence of the capacity upon
system parameters. The result is sketched in Fig. 5. There are Xlog
two main features worthy of comment. The first is the peak

P227|Gy(w)[?/A
1+ TR S| (29
P?(1—27|G4(w)|?/A)+2PN+N
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The prefactor of 1/2 arises because the intensity is a redbreen’s functions may be obtained in closed form. The result
field. In the limit of strong nonlinearity and large signal to shows a superdiffusive spreading of a signal pulse and of its
noise ratio, Eq.(29) reduces toC~ \[m/2A.Lis P?/(P  arrival time. We have interpreted these results in terms of the
+N)?]. This has an appealing interpretation. The effects ofamplitude and timing jitter of received pulses; both of which
nonlinearity are contained entirely within a prefactor andare standard measures of optical system performance. We
provide an effective bandwidtth .q;=6AL2/7L3,. our find that the received signal pulse shows a superdiffusive
analysis of jitter showed that XPM mainly introduces timing SPreading of its distribution of arrival timegt?)e<L®. Fi-
errors and not amplitude error. The effective bandwidth ennally, we have used the results to obtain lower bounds and
ters because signal pulses must be separated by more th@fimates of the capacity of the WDM system. These are
the timing error in order to be distinguishable. The informa-Pased upon the Shannon result for the capacity of a Gaussian
tion carried by each pulse is determined by the additive nois€hannel. In the case of coherent communication, they lead to
power. Notice that in the limit of strong nonlinearity, the & Strict lower bound upon the capacity. In the case of inco-
coherent capacity has an exponential decay with lengtt}erent communication, where only the signal amplitude and
whereas Eq(29) has a power-law decay. The actual coherent0t its phase is used for communication, we obtain an esti-
capacity is greater than the incoherent capacity, since Bate of the system capacity. The different dependences of
greater number of degrees of freedom are used in cohereft!r €stimates of capacity for coherent and incoherent com-
communication. The behavior of Eq@8) and (29) at large ~ Munication at large distances, exponential and power-law,
powers points to limitations of the Gaussian approximation/espectively, show the importance of accounting for the non-
A comparison of the coherent and incoherent capacity i$aussian nature of the channel.
shown in Fig. 5. The incoherent capacity shows a peak at
some optimal power. This peak is at slightly higher power
than that for the coherent capacity, because phase or timing
fluctuations are more sensitive to XPM than amplitude fluc-
tuations. The results contained in Eq&2) may be derived using
It seems plausible that it should be possible to express thgiles for the composition
capacity of a channel purely in terms of its multiple-order
Green'’s functions. Unfortunately, we do not have such an

APPENDIX: CALCULATION OF AMPLITUDE
FLUCTUATIONS

expression. Indeed, only for a channel that is entirely deter- At Gixy X 1ty t)GX Xoit 1) =G(Xy Xo ity tn)
mined by its two-pointor single particle Green’s function is A e eraren
it possible to write down such an expression. In this case the (A1)

channel is Gaussian and the result is E28) as obtained by

Shannor{1]. Obtaining such expressions would be a signifi- ynjtarity,

cant contribution to the understanding of communication in

nonlinear media. The bound on coherent communication and

the estimate of capacity for incoherent communication given g(x=0;t1,t) = o(ty1—tp), (A2)
above give an indication of the importance of including

higher-order Green’s functions. Vertex corrections to higheryng time reversal

order Green’s functions determine the extent to which the

channel has non-Gaussian statistics. Including these correc-

tions can dramatically modify the functional dependence of G (X1,X2;t1,12) = G(X2,X1 515, 14) (A3)
ones estimates of system performance upon system param-

eters. of the Green’s function for a particular realization of the

potential, V(x,t). These properties of the Green’s function
VII. CONCLUSIONS may be confirmed by considering the path-integral formula-
; : . . tion, Eq.(6).
In conclusion, we have considered the impediments to Using these relations, the first of Eq@2) may be de-
communication caused by nonlinear interaction between thg, ;. eq by the following series of manipulations:

subbands of a WDM optical fiber system. These interactions
between subbands lead to non-Gaussian input-output statis-

tics. We have provided a simple characterization of these _ , ,
non-Gaussian statistics in terms of vertex corrections to <E°“t(t)>_<AJ drg(t.t )+n(t)>
higher-order Green’s functions of the channel. Propagation

of light in the WDM system under the action of XPM is =A< f dt' gt t’)>
described by a Schdinger equation with a spatially and '

temporally random potential. This potential encodes the ef-
fects of XPM. We have calculated the Green’s function for

propagation in this channel using Feynman path-integral and
diagrammatic techniques. In the case where the signal corr&his is nothing more than the average of E8). The second
lations are approximated by functions in time, these of Egs.(22) requires a few more manipulations;

=A(G(0=0)).
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<|Eout(t)|2>:A2<jdtldtzg(tatl)g*(t1t2)>+<|n(t)|2>+A<n(t)f dtlg*(t.t1)>+A<n(t)*f dtlg(t.t1)>
=A2f dtdt,dt,G(t,t;)G* (t,t,)/ 8(0)+ NS(0)
=A2J dtdt,dt,G(0,0:t,,t;)/ 5(0)+NS(0)

:Azf dtdt,dt,8(t; —t,)/ 5(0)+ N&(0)

=(A?+N)48(0).

We have used EqGA3) in moving from the first to second line, followed by E¢81) and(A2) moving between lines two and
three and three and four, respectively. We have also used the fact that the averages over the noise and over the potential are
temporally invariant. the third of Eq$220 may be deduced as follows:

(S Eout(V) |8 Eoui V)| = (|Eout(D) |2 Eoud(1)]?) = (| Eoui(t)[2)?

=A“f dtydtdtadt,(G* (L;t,t1)G* (Lt 1) G(L;t,t3) G(L;t )
+4NA2f dt,dt,(G* (L;t,t)G(L;t,tp) ) +[2N2— (A%+N)?]5(0)2

~A4j dt dt,dtzdty(G* (L;t,t) G(L;t,ta) (G (L;t, 1) G(L;t,th)) +[N(2A2+N) — A*]5(0)2

2

~A% | dtdt,dt(G* (L;t,t1)G(L;t,t5))/ 8(0)| +[N(2A%+N)—A*8(0)2~N(2A%+N)5(0)2.

The third line is simply a rearrangement of the various terms arising after substitution (¥) E& complete calculation of the

first term in this expression requires evaluation of the four-particle Green’s function. We do not carry out this calculation here.
Instead we make the approximation discussed in the text and ignore vertex corrections. This approximation is embodied in the
step between the third and fourth lines. In moving to the fifth line, we have used the fact that the average over the noise and
random potential leads to temporally invariant expressions. We may then us@AEgs(A3) in the same way as before in

order to derive our final result.
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