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Schrödinger equation with a spatially and temporally random potential:
Effects of cross-phase modulation in optical communication
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We model the effects of cross-phase modulation in frequency~or wavelength! division multiplexed optical
communications systems, using a Schro¨dinger equation with a spatially and temporally random potential.
Green’s functions for the propagation of light in this system are calculated using Feynman path-integral and
diagrammatic techniques. This propagation leads to a non-Gaussian joint distribution of the input and output
optical fields. We use these results to determine the amplitude and timing jitter of a signal pulse and to estimate
the system capacity in analog communication.
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I. INTRODUCTION

A. General

The ability to transmit information is ultimately limited
by signal distortion. Information theory@1,2# quantifies the
extent to which such distortions inhibit communication;
was originally developed for the study of radio communic
tion or electrical communication along copper wires. In the
cases the signal propagation is linear— the received sign
a linear function of the transmitted signal. Distortion aris
due to the addition of extraneous signal fluctuations, wh
propagate linearly alongside the original signal. These fl
tuations may come from noisy amplifiers or other circ
elements, or from cross-talk with other messages. Such
ear systems with additive noise are very well characteri
from an information theoretical perspective.

In modern communication systems, the situation is rat
more complicated. The very high transmission rates
particularly in optical communication— require that th
transmission medium be operated in regimes where the
nal propagation is substantially nonlinear@3#. These nonlin-
earities can lead to a variety of new mechanisms of sig
distortion @4–9# and are often very difficult to characteriz
analytically. This has limited the understanding of nonline
channels, particularly from an information theoretical p
spective.

Faced with these difficulties, there are two ways in wh
progress may be made. One approach is to perform deta
numerical simulations of the underlying partial different
equation. This has been the approach of much of the wor
the literature. However, it is very difficult to use the resu
of such analyses to understand the information theore
aspects of communication in non-linear media. An alter
tive approach is to harness physical understanding of
signal propagation to motivate simple phenomenolog
models that capture some aspects of the nonlinear prop
tion, but which are nevertheless analytically tractable. T
approach has been used to understand a number of aspe
nonlinear propagation in optical fibers@4–9#. Only recently
have such approaches been applied to study the informa
theoretical aspects of the problem@10–12#.
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When one is interested in optimizing the design of a co
munications system, it is often useful to characterize
various mechanisms of signal distortion according to th
physical origin in the system. This is not always the best w
of classifying signal distortion from an information theore
cal point of view. A more convenient classification is to d
vide signal distortions into additive and multiplicative nois
The signal distortions in optical fibers may be classified
this manner@12#. It is the multiplicative noise that presen
the main difficulty in understanding nonlinear channels.
lies behind some of the classic unsolved problems in inf
mation theory@2#. It is to this aspect of the problem tha
path-integral and diagrammatic techniques are particul
suited. In the system studied in this paper, multiplicat
noise appears as a random potential in a Schro¨dinger equa-
tion.

The tension between additive and multiplicative noise
similar to the tension between disorder and interactions
many-body physics. In the latter case, the consequenc
this tension is that a full analytical characterization is n
possible. Instead, one must resort to approximation sche
that are appropriate under different regimes of system par
eters. It is likely that for the same reasons one will be forc
to use similar approximate schemes to study the propaga
of signals in nonlinear media. Physicists have worked har
develop such schemes and some of them are directly a
cable to the study of nonlinear signal propagation; for e
ample, Falkovichet al. @13# have used the theory of optima
fluctuation to understand the fluctuations in soliton amplitu
and timing that occur in optical communication. In this p
per, we use Feynman path-integral@14# and diagrammatic
techniques@15# in order to understand some of the effects
nonlinearity upon optical communication. Most of this pap
will concentrate upon characterizing the propagation of lig
in the fiber. Towards the end of the paper, we will harne
this characterization to understand some information theo
ical aspects of the problem.

B. The wavelength division multiplexed optical fiber

In this paper, we will consider some of the effects
nonlinearity upon communication using frequency divisi
©2002 The American Physical Society27-1
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multiplexed optical fibers@3#. Optical fibers have an enor
mous transparent bandwidth. It is far beyond current e
tronics to modulate at these frequencies. In order to utilize
much of the bandwidth as possible, it is divided into a nu
ber of nonoverlapping frequency bands, or subbands, eac
which is modulated independently. This is called frequen
division multiplexing or alternatively wavelength divisio
multiplexing ~WDM!.

Light propagating in a WDM optical fiber experience
several sources of signal distortion and nonlinearity. The fi
of these is due to dispersion; the different frequency com
nents of a signal travel at different velocities along the fib
leading to a spreading of a signal pulse. This spreading
linear operation, however, and does not reduce the capa
to communicate information. The effects of dispersioncould
be taken into account by a suitable linear transformation
the received signal during processing. Usually, however,
persion is accounted for by introducing dispersion comp
sating elements into the transmission link; spans of stand
dispersive fiber are interleaved with spans of dispersion c
pensating fiber in which the sign of dispersion has been
versed, so that more slowly moving frequency compone
catch up with the faster moving components.

As light propagates in an optical fiber, some of it is sc
tered out of the fiber by Raman scattering leading to a los
signal power. This is compensated for by the periodic ins
tion of short spans of lasing fiber. As the light passes thro
the lasing fiber, it is amplified by stimulated emission. It
impossible to avoid a certain amount of spontaneous em
sion in this process. This is amplified alongside the sig
and provides a source of additive noise called amplifi
spontaneous emission~ASE! noise.

Although we take full account of the effects of dispersio
dispersion compensation and ASE noise in our analy
these are not the main focus of this work. A system with o
these effects is a linear system with additive noise. This
precisely the type of system understood by Shannon m
years ago@1#. The additional aspects of optical communic
tion are the nonlinearities present in the propagation of li
in an optical fiber. The most important of these nonlinearit
is the optical Kerr nonlinearity, by which the refractive inde
of the fiber depends upon the intensity of light in the fib
@3#.

The Kerr nonlinearity causes scattering between differ
frequency components of light in the fiber. Two incomin
frequency components scatter into two outgoing freque
components. In WDM systems the effects of the Kerr no
linearity are grouped according to the origin of the frequen
components which scatter off one another. When the inc
ing and outgoing frequency components all lie in the sa
subband, the effect is known as self-phase modula
~SPM!. It is this nonlinearity that is responsible for the po
sibility of soliton propagation within a subband. The comb
nation of SPM and ASE noise leads to several mechani
of signal distortion: fluctuations in the amplitude and arriv
times of soliton pulses, known as Gordon-Haus jitter@4#;
nonlinear amplification of the phase noise@5#; and, depend-
ing upon the sign of dispersion, a nonlinear instability
amplitude fluctuations about a constant signal called
04662
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modulation instability@9#. When the incoming frequency
components are in different subbands and scatter back
their original subbands, the effect is called cross-ph
modulation~XPM!. This is the effect that we will concen
trate upon here. We will show explicitly that this leads
multiplicative noise— to a spatially and temporally rando
potential due to the signal in the other subbands. We will fi
a superdiffusive spreading of the pulse shape and a supe
fusive spreading of arrival times. Finally, the effect of th
Kerr nonlinearity, when all of the incoming and scatter
frequency components lie in different subbands is known
four-wave mixing ~FWM!. From the point of view of the
signal in any particular subband, it has an identical effec
additive amplifier noise@16#.

A complete WDM optical communications system co
sists of a series of spans of standard, dispersive fiber in
leaved with dispersion compensating fibers and loss comp
sating amplifiers. The precise ordering of these element
known as the dispersion map. The performance of the sys
can depend quite sensitively upon this dispersion map. H
ever, for concreteness, we will restrict ourselves to one p
ticular map, shown in Fig 1.

Our approach will be to calculate Feynman path integr
describing the propagation of light in a single subband, t
ing account of scattering from signals in other subban
through XPM. Green’s functions for this propagation mu
be averaged over realizations of the signal in other subba
Green’s functions for propagation in the optical fiber turn o
to be Green’s functions of a Schro¨dinger equation with a
spatially and temporally random potential. The main calc
lations in this paper are the evaluation of the single- a
two-particle Green’s functions of this Schro¨dinger equation.
This calculation is similar to calculations carried out in tw
other contexts: Turbulent flow or the growth of interfac
may both be described by the Kardar, Parisi, and Zh
equation@17–19#. This may be mapped to a diffusion equ
tion with a spatially and temporally random potential. Ca
culating the quadratic statistics for these processes and a
aging over the turbulent flow or noise in the growth proce
is very similar to calculating the two-particle Green’s fun
tion in our problem. In particular, short-range temporal c
relations allow the calculation to be reduced to an effect
single-body problem for which the Feynman path integ
may be readily calculated. We will find the same structure
our solution to the present problem. The second problem
which our work bears similarity, is the calculation of Green
function in the presence of a quenched random poten
@15#. In this context, it is usual to truncate the diagramma
series for the single- and two-particle Green’s functions
the Born and Ladder series, respectively. Here we will fi

FIG. 1. Schematic diagram of an optical fiber system.
7-2
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SCHRÖDINGER EQUATION WITH A SPATIALLY AND . . . PHYSICAL REVIEW E 66, 046627 ~2002!
that this truncation is justified by the short-range tempo
correlations of the random potential.

Our approach contrasts with other methods of includ
the effects of XPM in WDM systems@6#, in which individual
scattering events between soliton pulses in different s
bands are considered. Our results are very similar to th
obtained for Gordon-Haus jitter@4#, although of a different
physical origin.

Before going on to a detailed calculation, let us first st
our results and the physics underlying them. As a sig
pulse propagates along a particular subband it passes thr
regions of higher and lower intensity of the total signal in t
other subbands. This causes the pulse to speed up and
down due to the Kerr nonlinearity. Since the signals in
other subbands are unknown to the users of any partic
subband, this speeding up and slowing down of the pulse
a statistical uncertainty. The result is a diffusive spreading
the phase velocity and a corresponding superdiffus
spreading of the distribution of pulse arrival time;^dT2&
}L3 ~to see this requires integrating the diffusively spread
phase velocity over the length of propagation!. This is the
main result of our calculation. The functional form is ve
similar to that obtained previously for Gordon-Haus jitt
@4#, although its physical origin is slightly different; it is du
to XPM rather than a combination of SPM and ASE noise
addition to the uncertainty in the pulse arrival time, the pu
shape itself is distorted due to the effect of XPM; since th
travel at different speeds, the different frequency compone
of the pulse sample slightly different portions of the signal
the other channels and arrive at slightly different tim
Therefore, the pulse width itself will show a superdiffusi
spreading due to the effects of XPM. The effect of XP
upon the pulse power is much weaker than its effect u
pulse timing. The processes leading to fluctuations in pu
power are of higher order in the~weak! nonlinearity. The
timing errors induced by XPM cause the pulse power
spread over a larger interval leading to the possibility
overlap between adjacent pulses. This intersymbol inter
ence allows timing errors to be converted into amplitu
errors. Numerical simulation, however, shows that the do
nant contribution to amplitude errors comes from SPM@16#,
the effects of which are not studied here.

II. THE MODEL

The propagation of light in an optical fiber is described
Maxwell’s equations with a dielectric constant depend
upon the energy density of the electromagnetic field. T
optical fibers used in communications systems support o
one transverse mode. Expanding the Maxwell’s equation
the low frequency envelope of the electric field and tak
the long wavelength limit, one obtains a nonlinear Sch¨-
dinger equation with the roles of space and time int
changed@3#:

i ]zE~z,t !5~b] t
22 ia!E~z,t !2guE~z,t !u2E~z,t !. ~1!

The term proportional toa on the right-hand side of this
equation describes the loss of optical power from the chan
and the term proportional tog encodes the effects of the Ke
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nonlinearity. Dividing the electric field into its componen
in each subband of the WDM system, the low frequen
envelope of the electric field in thei th subband,Ei(z,t), is
given by

i ]zEi~z,t !5~b] t
22 ia!Ei~z,t !1V~z,t !Ei~z,t !,

V~z,t !522g(
j Þ i

uEj~z,t !u2. ~2!

In writing down this expression we have neglected se
phase modulation,guEi(z,t)u2Ei(z,t), and four-wave mix-
ing, g( j ,kÞ iEj* (z,t)Ek(z,t)Ei(z,t). This neglect of self-
phase modulation and four-wave mixing may be justified
two grounds. First, there are regimes where numerical si
lation confirms this to be a good approximation@16#. Study-
ing the system in the absence of the effects of self-ph
modulation and four-wave mixing allows us to deduce t
effects of XPM. Our aim is to determine what constraints a
imposed upon communication by these effects. Other sou
of signal distortion will impose additional constraints in
real system, but these are not of direct concern in this pa
Equation~2! corresponds to a nonlinear Schro¨dinger equa-
tion with a spatially and temporally random potential due
nonlinear interaction with the signals in the other subban
The effects of loss in this system may be accounted for
using rescaled electrical fields that maintain their amplitu
during propagation;Ee f f,i(z,t)5eazEi(z,t). The propaga-
tion of these rescaled fields is described by Eq.~2! with an
exponential rescaling of the strength of nonlinearity,ge f f
5g(12e2aL)/aL, whereL is the length of a single span o
fiber, and without the loss term proportional toa. Hence-
forth, we will assume the use of these rescaled fields
drop the subscript ‘‘e f f’’ for brevity.

We follow Ref.@10# and model the stochastic potential b
a Gaussian distribution with short-ranged correlations
space and time; the signals in the separate subbands ar
tistically independent and have short-ranged temporal co
lations on time scales of order 1/bandwidth. Relative disp
sion of signals in different subbands leads to sho
ranged spatial correlations, which may be approxima
by a delta function if the dispersion is sufficiently larg
The strength of the potential,h5*dẑ dV(z,t)dV(0,t)&
5@(gP)2/(2bDdW)# ln@nc/2#, is obtained by summing the
contributions fromnc channels with separationdW, band-
width D, and signal powerP. The logarithmic dependenc
upon the number of channels is due to the suppressio
the effects of widely separated channels by dispers
@10#. In the following section, we will often write
^dV(z,t)dV(0,0)&52ph/Dd(t)d(z), with an explicit d
function in time. This simplifies our calculations and eluc
dates which contributions are most important for propagat
in a potential with short temporal correlations. It is importa
to realize, however, that the potential and signal are b
band limited, so that the correlations are not strictlyd func-
tional. We account for this by regularizing thed function of
zero argument tod(t50)5D/2p.

The system considered here consists of 103 @80 km stan-
dard fiber followed by 16 km dispersion compensating~dc!
7-3
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fiber and a loss compensating amplifier#. The input signal has
power, bandwidth and channel separationP55 mW, D
510 GHz, anddW515 GHz, respectively. The standa
~or dc! fiber loss, nonlinearity, and dispersion paramet
are a50.048(0.115) km21, g51.2(5.1) W21 km21, andb
511.0(266.9) ps2 km21. ComparinggP/a for the standard
and dc fibers gives a measure of their relative strength
nonlinearity. The power entering the dc fiber is a factor
;50 lower than that entering the standard fiber. This, co
bined with the greater loss in the dc fiber, leads to an eff
tive strength of nonlinearity;150 times greater in the stan
dard fiber. We ignore nonlinearity in the dc fiber in o
analytical work. It may be included in precisely the sam
way as in the standard fiber and does not lead to any qu
tative change in our results. Three important lengthsca
may be determined from these system parameters; the
fiber length Ltot510380 km, the nonlinear lengthh21

5223km, and the dispersion lengthLD5(bD2)21

5747 km. The response of the system is completely de
mined by the ratios of these three length scales.

III. INPUT OUTPUT STATISTICS

The output electric fieldEout(t), after propagating along a
single span of standard fiber, may be expressed in term
the input electric fieldEin(t) as

Eout~ t !5E dt8G~ t,t8!Ein~ t8!1n~ t !, ~3!

wheren(t) is additive Gaussian white noise, with varian
N, representing ASE noise.G(t,t8) is the Green’s function of
Eq. ~2! for propagation fromz50 at timet to z5L at time
t8, with a fixed realization ofV(z,t). More generally, we
will use the notationG(z1 ,z2 ;t1 ,t2) to indicate the Green’s
function for propagation fromt5t1 , z5z1 to t5t2 , z5z2.
Using this notation,G(t1 ,t2)[G(0,L;t1 ,t2). Suppression of
one of the spatial indices implies propagation fromz50;
G(z;t1 ,t2)[G(0,z;t1 ,t2). Similarly, G(z,t)[G(0,z;0,t). It is
particularly important to note thatG(t1 ,t2)ÞG(t12t2), as
would be the case for a static potential.

Dispersion compensation is included by replacingG(t,t8)
in Eq. ~3! with a dispersion compensated Green’s funct
Gd(t,t8). This is obtained by convolving the Green’s fun
tion for the standard fiber,G(t,t8), with the Green’s function
for the dispersion compensating fiber,Gcomp(t,t8); Gd(t,t8)
5*dt9Gcomp(t,t9)G(t9,t8). Gcomp(t,t8), has the opposite
sign of b to G(t,t8) and describes propagation with no p
tential,V.

Propagation along a series of interleaved standard an
spans is modeled by convolving a string of dispersion co
pensated Green’s functions. This convolution is independ
of the ordering of the Green’s functions and the effects
XPM are, therefore, independent of the dispersion map. R
systems are sensitively dependent upon the choice of
map due to the effects of SPM, which is ignored here.
nally, due to the unitarity ofGd(t,t8), adding ASE noise a
each amplifier is equivalent to adding Gaussian white no
at the receiver. Analytical calculations may, therefore, be p
04662
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standard spans followed byNs dispersion compensatin
spans and adding Gaussian white noise at the receiver.

We now use this simple model of the system to calcul
the effects of XPM upon the input and output signals. W
shall refer to this as the input-output statistics for brev
from now on. The quadratic statistics are given by

^Ein* ~ t !Ein~ t8!&5Pd~ t2t8!,

^Ein* ~ t !Eout~ t8!&5P^Gd~ t,t8!&,

^Eout* ~ t !Eout~ t8!&5~P1N!d~ t2t8!, ~4!

and the quartic statistics are given by

^duEin~ t !u2duEin~ t8!u2&5DP2d~ t2t8!/2p,

^duEin~ t !u2duEout~ t8!u2&5P2G d
II ~ t2t8!,

^duEout~ t !u2duEout~ t8!u2&5D~P1N!2d~ t2t8!/2p. ~5!

The angular brackets indicate averages over the signal in
subband of interest, the signals in the other subbands, an
amplifier noise.̂ Gd(t,t8)& is the average of the dispersio
compensated, single-particle Green’s function over the
tential ~or realizations of the signal in the other subband!
and G d

II(t2t8)5^uGd(t,t8)u2& is the average of the two
particle Green’s function over the random potential. The
put signal is assumed to have a Gaussian distribution w
powerP and the amplifier noise to have a Gaussian distri
tion with powerN. We have used the unitarity of the single
point Green’s function for a particular realization of the p
tential in deriving Eqs.~4! and ~5!; G(t,t)51. The delta
function d(t2t850) has been regularized as discussed
Sec. II to allow for the fact that the subband has a bandwi
D; d(t2t850)5D/2p. The averaged Green’s function
^Gd(t,t8)& andG d

II(t2t8) are invariant under temporal trans
lations and are therefore, functions oft2t8.

The statistics embodied by Eqs.~4! and ~5! are non-
Gaussian, sinceG d

II(t2t8)Þu^uGd(t,t8)&u2 in general. The
corrections to Gaussian statistics are given by the vertex
rections to the two-particle Green’s function. Alternative
one may say that linear propagation in the presence o
random potential leads to nonlinear propagation on avera
Calculation of the quadratic and quartic statistics in terms
Green’s functions allows a simple characterization of t
nonlinearity. In the following section, we will give an ex
plicit calculation of the averaged Green’s functions and f
low this in the subsequent sections by a discussion of t
consequences for optical communication. The quadratic
tistics will be useful for our discussion of coherent comm
nication and the quartic statistics will be useful for our d
cussion of incoherent communication.

IV. CALCULATIONS

The average Green’s functions^G& andG II may be calcu-
lated from their Feynman path-integral representations@14#.
If we assume that the stochastic potential isd function cor-
related in time, these path integrals may be evaluated
closed form. These results correspond to resumming
Born and ladder series@15# in the diagrammatic expansion
of ^G& and G II , respectively. These series may be used
7-4
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approximate the effects of a non-d-function correlated poten
tial. The diagrams that are neglected in this approximat
are small for a potential with short-ranged temporal corre
tions; the use of ad-function correlated potential is a calcu
lational tool that emphasizes the range of validity of th
approximation. In the following, we will calculate equation
of motion for^G& andG II from their path integrals, under th
assumption thatV is d function correlated in time. We will
show how the solutions of these equations correspond to
resummed perturbative, ladder and Born series. Finally,
average Green’s functions^G& andG II will be calculated al-
lowing for the band limit of the subband and potential due
the other subbands.

A. Single-particle Green’s function

Recalling that the roles of space and time have been
terchanged here compared with their more familiar roles
quantum mechanics, the single-particle Green’s function
written in the form

^G~L,t !&5K E
t(0)50

t(L)5t

Dt~z!expF2E
0

L

dz
i

2b
~]zt~z!!2

2 i E
0

L

dzV~z,t~z!!G L
5E

t(0)50

t(L)5t

Dt~z!expF2E
0

L

dz
i

2b
@]zt~z!#2

2
1

2E0

LE
0

L

dzdz8^V~„z,t~z!…V„z8,t~z8!…&#,

~6!

where the angular brackets denote averages over realiza
of V. We have carried out the average overV in order to
obtain the second line, assuming thatV is a Gaussian random
variable.

Taking the derivative of Eq.~6! with respect toL @14#, we
obtain the following equation of motion for^G&:

S 2 i
b

2
] t

22]LD ^G~L,t !&

5d~L !d~ t !1E
0

LE
2`

`

dt8dẑ V~L,t !V~z,t8!&

3^G~L2z,t2t8!&^G~z,t8!&. ~7!

This equation is local in time for a stochastic potential th
is d function correlated in time; ^V(z,t)V(0,0)&
5(2ph/D)d(t)d(z). The solution of this local equation o
motion is ^G(L,t)&5e2hL/2G0(L,t), where G0(L,t) is the
Green’s function of the operator (2 ib] t

2/22]L), i.e., the
Green’s function for propagation in the absence ofV. This
result was first obtained in Ref.@10#. Equation~7! may also
be obtained diagrammatically by resumming the Born ser
it is nothing but the Dyson’s equation for^G(L,t)& obtained
by resumming this series@15#. The temporald-function cor-
relation of V implies that the propagators ofV must not
04662
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cross, thus restricting the contributing diagrams to the B
series. Figure 2 shows a symbolic representation of Eq.~7!
after multiplying on the left byG0. The dashed line indicate
propagators ofV, the solid line indicatesG0, and the thick
solid line indicateŝ G&. This diagram is to be interpreted i
real space or momentum space in the usual way. The Gre
function in frequency and momentum space is

^G~p,v!&5 i ~p2bv21 ih/2!21, ~8!

wherep is the wave vector conjugate toz and v is the an-
gular frequency conjugate tot. For later calculations, it is
useful to havê G& in a mixed, position and frequency nota
tion, where it is given by

^G~z,v!&5exp@2~h/22 ibv2!z#. ~9!

Dispersion compensation is achieved by temporally convo
ing G(L,t) for the standard fiber with that of the compens
ing fiber ~or alternatively multiplying together the positio
and frequency space Green’s functions!. Ignoring nonlinear-
ity in the compensating fiber, we findGcomp(L,t)
5G0* (L,t). The dispersion compensated Green’s function
then given by

^Gd&~L,t !5e2hL/2d~ t !. ~10!

On average, therefore, the effects of XPM nonlinearity se
rate from those of dispersion. Moreover, the effect of XPM
to dephase the propagating electric field.

B. Calculation of G II

The calculation ofG II from its path integral proceeds in
very similar manner to the calculation of^G&. After writing
down the path-integral representation ofG II , we perform the
average overV and deduce an equation of motion forG II by
differentiating with respect toL. This differential equation is
local in time when the correlation function ofV is a temporal
d function. The equation of motion is most easily solved
the frequency domain, where it is recognizable as the
summed ladder series. As before, the set of contributing
grams is restricted due to the requirement that the propa
tors of V may not cross. We will first of all derive an
expression forG II(v,q) in the absence of dispersion com
pensation from its path-integral representation. We w
verify that this result is identical to that obtained by sum
ming the ladder series of diagrams. In fact, closed exp
sions forG II(L,t) are most readily obtained by resummin
this series directly in the length and frequency domain.
explicitly carry out this resummation to obtain expressio
for G II(L,v) and its dispersion compensated counterp
G d

II(L,v).
We will first derive a path integral and equation

motion for the Green’s function, G II(L;t1 ,t2)
5^G(L,t1)G* (L,t2)&. In the end we will be interested in
G II(L,t)5G II(L;t15t,t25t). The path-integral representa
tion of G II is

FIG. 2. Born series for̂G&.
7-5
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G II ~L;t1 ,t2!5^G~L,t1!G* ~L,t2!&

5K E
t1(0)50,t2(0)50

t1(L)5t1 ,t2(L)5t2
Dt1~z!Dt2~z!expF E dzS i

~]zt1!2

2b
2 i

~]zt2!2

2b D G
3expF2

1

2E dz@2 iV„z,t1~z!…1 iV„z,t2~z!…#G L
5E

t1(0)50,t2(0)50

t1(L)5t1 ,t2(L)5t2
Dt1~z!Dt2~z!expF E dzS i

~]zt1!2

2b
2 i

~]zt2!2

2b D G
3expF2

1

2E dzdz8^V„z,t1~z!…V„z8,t1~z8!…&G
3expF2

1

2E dzdz8^V„z,t2~z!…V„z8,t2~z8!…&G
3expF E dzdz8^V„z,t1~z!…V„z8,t2~z8!…&G . ~11!
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The average overV has been carried out in passing from t
penultimate to final line of Eq.~11!. The equation of motion
for G II is derived by differentiating both sides of this equ
tion with respect toL. The resulting differential equation i
local in time whenV hasd-function correlations in time. It is
slightly easier to make the assumption of tempora
d-function correlations forV in Eq. ~11! before differentiat-
ing. The path integral then reduces to

G II~L;t1 ,t2!5E
t1(0)50,t2(0)50

t1(L)5t1 ,t2(L)5t2
Dt1~z!Dt2~z!

3expF E dzS i
~]zt1!2

2b
2 i

~]zt2!2

2b
1h

2h
2p

D
d„t1~z!2t2~z!…D G . ~12!

This result is very similar to that obtained in the analysis
the diffusion equation with a spatially and temporally ra
dom potential@17#. In that case, the path integral for th
square of the wave function reduced to that of two intera
ing random walks. Here the path integral forG II reduces to
that of two interacting Schro¨dinger particles, or waves
propagating in opposite directions. Differentiating Eq.~12!
with respect toL, we obtain the following local equation o
motion for G II :

S ]L2 i
b

2
~]t1

2 2]t2

2 !1h DG II~L;t1 ,t2!

5d~L !d~t1!d~t2!1h
2p

D
d~t12t2!G II~L;t1 ,t2!.

~13!
04662
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This equation is most easily solved by first changing coor
nates to the mean time,t5(t11t2)/2, and time difference,
T5(t12t2)/2. After Fourier transforming in space and tim
we find

2 i S q2
b

2
vV1 ihd~0! DG II~q;v,V!

511
2ph

D E dV

2p
G II~q;v,V!, ~14!

wherev and V are the angular frequencies conjugate tot
andT, respectively andq is the wave-vector conjugate toL.
Equation~14! is equivalent to the ladder series shown in F
2. In order to make this correspondence clear, the effect
nonlinearity have been divided into two parts; the term p
portional toh on the left-hand side of Eq.~14! takes account
of self-energy correction to the single-particle Green’s fun
tion and the term proportional toh on the right-hand side
takes account of vertex corrections. Following the usual c
vention, we denote the solution of Eq.~14! in the absence of
vertex corrections byP(q;v,V)52 i (q2bvV/21 ih)21.
One may check by direct substitution of^G(q,v)& from Eq.
~8! that P(q;v,V)5*dp/2p^G(q1p,v1V)&^G* (p,V)&.
Finally, using the notationP(q,v)5*dV/2pP(q;v,V),
the solution of Eq.~14! is

G II~q,v!5
P~q,v!

12
2ph

D
P~q,v!

5P~q,v!S 11
2ph

D
P~q,v!

1S 2ph

D D 2

P~q,v!21••• D , ~15!
7-6
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which corresponds to the ladder diagram shown in Fig. 3
The modification to these results due to dispersion co

pensation is not quite as simple as the modification to^G&.
Although it is possible to derive a path-integral express
for G d

II akin to Eq.~13!, it is easiest to derive the dispersio
compensatedG II using diagrammatic perturbation theory
the length and frequency domain. The appropriate diagr
matic series is shown in Fig. 4. The result of summing t
series is

G d
II~L,v!5Pd~L,v!1

2ph

D E
0

L

dxP~x,v!Pd~L2x,v!

1S 2ph

D D 2E
0

L

dxE
0

x

dyP~x,v!P~y,v!Pd~L

2y,v!1 . . . . ~16!

P(z,v) is given by

P~z,v!5E dv8

2p
^G~z,v81v/2!&^G* ~z,v82v/2!&

5e2hzE dv8

2p
eibv8vz ~17!

and Pd(z,v) is the dispersion compensated analogue
P(z,v), given by

Pd~z,v!5E dv8

2p
^G~z,v81v/2!&G0* ~L,v81v/2!

3^G* ~z,v82v/2!&G0~L,v82v/2!

5e2hzE dv8

2p
eibv8v(z2L). ~18!

The calculation ofG II proceeds by substitutingPd(z,v) and
P(z,v) into Eq.~16!, carrying out the frequency integrals i
each term, followed by the integrals over length, and fina
summing the contributions from each term. In carrying o
this procedure, one must take care over the support for
various frequency integrals. The band limitation of the su
band implies that the angular frequency carried by each
ternal Green’s function must lie between2pD and 1pD.
Carrying out the frequency integrals with this restricti
leads to very complicated expressions. An alternative
proach, which yields much more manageable expression
to take into account the fact that the stochastic potentia
not strictly d function correlated in time, but is band limite
to lie between2pD and1pD. We use the fact thatV has
short-range correlations in time to justify neglecting ter
other than those of the Born and ladder series in our

FIG. 3. Ladder series forG II .
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grammatic calculation, but allow for the band limitation ofV
in calculations of internal frequency integrals.

Let us illustrate this by explicitly calculating the secon
order term in Eq.~16!. This is given by

E
0

L

dxE
0

x

dyP~x,v!P~y,v!Pd~L2y,v!

5E
0

L

dxE
0

x

dyE dv1

2p

dv2

2p

dv3

2p

3exp@ ibv~v32v2!x1 ibv~v22v1!y#

5S D

2p D 3

e2hLE
0

pbvDL

dXE
0

X

dY
sinX

X

sinY

Y

5S D

2p D 3

Le2hL
1

2 S Si@X#

X D U
X5pbvDL

, ~19!

where Si@X#5*0
Xdu sinu/u. We have carried out the fre

quency integrals in passing between the second, third,
fourth lines. The integration variables have been chan
from v1 , v2, andv3 to v1 , v32v2, andv22v1. Integra-
tions have been carried out over the domains2D/2
<v1 ,v32v2 ,v22v1<D/2, the first corresponding to th
bandlimitation of the signal in the subband and the sec
and third to bandlimitation of the stochastic potential lead
to a restriction on the transfer of frequency at each verte

Calculating each term in the series in this way and resu
ming, we obtain our final result

G d
II~L,v!5

D

2p
expF2hLS 12

Si@X#

X D GU
X5pbvDL

~20!

for dispersion compensated propagation. The Green’s fu
tion for uncompensated propagation is calculated simila
replacingPd with P in Eq. ~16!. The result is

FIG. 4. Position-space diagrammatic series forG d
II(L,v).
7-7
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G II~L,v!5G d
II~L,v!

sinX

X U
X5pbvDL

. ~21!

The prefactor of sinX/X describes the dispersive spreadi
of a pulse propagating in the absence of nonlinear
The distortion of the pulse due to XPM is described
G d

II(L,v). There are two important limits of Eq.~20!. At
small frequencies, Si@X#/X→12X2/18. As a consequenc
G d

II(L,v) tends to a Gaussian of widthA^v2&52pDe f f

5(3D/p)ALD
2 /hLtot

3 . The interpretation of this width as a
effective bandwidth will be discussed below. At large fr
quencies,G d

II(L,v) tends to a constant. These limits imp
thatG d

II(L,t) has Gaussian tails at large times and approac
a d function at short times. We will discuss the consequen
of these results for communication in the following sectio

V. AMPLITUDE AND TIMING JITTER

The results of Secs. III and IV give the input and outp
statistics of the WDM optical fiber in terms of its single- an
two-particle Green’s functions. In this and the following se
tion, we shall use these results to discuss the effectct of X
upon communication.

First, we discus two operational measures of the e
ciency of an optical communications system. Our discuss
will be quite brief, since these considerations are not cen
to the main message of this paper. Nevertheless, it is im
tant to demonstrate that analytical results such as Eqs.~20!
and ~21! can be used to enhance understanding from
operational perspective. A common way of characteriz
signal distortion in optical communications is by amplitu
and timing jitter. These measures of system performance
specific to digital communication. A digital message is ma
up of a string of pulses or marks representing 1’s, and spa
representing zeros. As a pulse propagates along a noisy c
nel, it speeds up and slows down in a random way leadin
a distribution of arrival times~defined as the centroid in tim
of the power distribution at the output! at the receiver known
as timing jitter. Similarly, the total power of the pulse flu
tuates leading to a distribution of the amplitudes of the
ceived pulse known as amplitude jitter. The distributions
the amplitude and timing fluctuations need not be indep
dent @13#. In fact, the terms amplitude and timing jitter a
often reserved for the variance in the amplitude and arr
times of a pulse. This is the sense in which we shall u
these terms from now on. In addition to jitter, the shape
the individual pulses may be distorted during propagati
We do not discus these distortions here.

The effects of SPM and ASE upon the amplitude a
timing jitter of soliton, or solitonlike, pulses has been co
sidered in a number of works, starting with Ref.@4#. All of
these works expand in small fluctuations— induced by
additive ASE noise— about a soliton solution. Such analy
lead to the conclusion that amplitude jitter is not very s
nificant and that timing jitter leads to anL3 dependence o
the variance of arrival times. This latter result is known
Gordon-Haus jitter after its discovery in Ref.@4#. A recent
work of Falkovich et al. @13# has used a saddle point a
04662
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proximation within a Martin-Siggia-Rose field theory for th
propagation to obtain a full joint distribution of amplitud
and timing errors. This work shows in a particularly tran
parent way, the connection between the method of opti
fluctuations in field theory and large deviations in statisti
Here we use Green’s function techniques to consider the c
tribution of XPM to jitter. Despite its different physical ori
gin, the resulting jitter has a broadly similar dependen
upon system parameters to Gordon-Haus jitter.

In principle, the output for an arbitrary input pulse sha
may be calculated, accounting for the effects of XPM,
terms of Green’s functions for propagation along the fib
The amplitude and timing jitter may then be obtained
taking appropriate averages. This calculation may in prac
prove rather cumbersome. However, the functional dep
dence of the jitter upon system parameters is expected t
broadly independent of the input pulse shape~the magnitude
of the jitter will show a weak dependence upon the pu
shape!. For simplicity, therefore, we present approximate e
pressions for the amplitude and timing jitter due to XPM,
considering the output for constant and delta-function inpu
respectively. The simple expressions obtained in this w
demonstrate the functional dependence of the jitter upon
system parameters. In particular, we find that the varianc
arrival times is proportional toL3, whereas the amplitude
jitter is largely independent of XPM. These functional depe
dences are the same as those due to Gordon-Haus jitte
though the physical origin is somewhat different@4#.

Timing jitter may be found by considering the response
an input d -function in time. A real signal pulse is ban
limited, but it may be thought of as being made up of ma
d functions. The use of ad function input allows us to cal-
culate the functional form of the timing jitter in an analyt
cally tractable way. The dependence of the resulting jit
upon system parameters is expected to be broadly simila
arbitrary input pulse shapes. Without XPM, the output el
tric field resulting from a d-function input is Eout(t)
5Gd(t)}d(t) and the modulus of the electric field is give
by uEout(t)u25uGd(t)u2}d(t). Introducing XPM broadens
this response. Different frequencies making up the pulse
a slightly different stochastic potential and arrive at sligh
different times. Since the signals in the neighboring su
bands are unknown, this broadening leads to uncertaint
the arrival time. Averaging the response to ad-function input
over realizations of the signals in the other subbands, th
fore, we find thatG d

II(t)5^uGd(t)u2& gives a measure of the
distribution of arrival times. Using this interpretation and t
results of the preceding section on the calculation ofG d

II , we
find ^t2&5(2pDe f f)

22}Ltot
3 h; XPM causes a superdiffusiv

spreading of arrival times. This functional dependence of
timing jitter upon the fiber length is identical to that found b
Gordon and Haus for the combined effects of ASE noise
SPM @4#. Notice that this contribution to the timing jitte
arises entirely from vertex corrections to the two-partic
Green’s function,G d

II(t); if we ignore vertex corrections by
making the approximationG d

II(t)5u^Gd(t)&u2 and substitut-
ing Eq. ~9!, we find no contribution to the timing jitter.

Using Eq.~3! to calculate the statistics of the output fo
7-8
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inputs held constant atEin(t)50 and Ein(t)5A gives an
estimate of the amplitude statistics of a 1 and 0 in the outpu
bit stream@7#. For a zero input, the output has the sam
Gaussian distribution as the noise. For an input of cons
amplitudeA,

^Eout~ t !&15A^Gd~v50!&,

^uEout~ t !u2&15~A21N!d~0!,

^duEoutu2~ t !duEoutu2~ t !&15A4@^uGd~v50!u4&2d~0!2#

1N~2A21N!d~0!2

'N~2A21N!d~0!2, ~22!

where thed function of zero argument is to be understood
D/2p5d(0) for our band-limited subband. The evaluatio
of these results is outlined in the Appendix. The output fo
1 input is not Gaussian: a Gaussian fit to^Eout(t)&1 and
^uEout(t)u2&1 does not reproducêduEoutu2(t)duEoutu2(t)&1.
These results also predict that the contribution of XPM to
amplitude jitter is small. Equation~22! depends upon the
evaluation of^uG(v50)u4&, which we have not carried ou
here. A full evaluation of this four-particle Green’s functio
would be required to give a full expression for the amplitu
jitter. If, however, we approximatêuG(v50)u4&'^uG(v
50)u2&25d(0)2, then the amplitude jitter shows no depe
dence upon XPM. Corrections to this result arise fro
higher-order vertex corrections to the four-particle Gree
function and are small for weak nonlinearity. In particul
these vertex corrections are of higher order than those
give rise to timing jitter. The predominant effect of XPM
therefore, is to induce timing errors. This conclusion is
accord with other works that have attempted to model
effects of XPM as a modification to the Gordon-Haus resu
for the soliton jitter@6#. In these works, individual scatterin
events between solitonlike pulses in different subbands of
WDM system are considered and the amplitude jitter due
scattering is ignored.

VI. INFORMATION THEORY

In this section, we will discuss how the input-output s
tistics calculated in Secs. III and IV may be used to constr
general arguments about the maximum rate of commun
tion via a WDM system. This is still an open problem. T
only systems for which exact answers about information
pacity may be obtained are those with Gaussian input-ou
statistics. We will use the results for Gaussian systems
obtain lower bounds upon and approximations to the cap
ity of the present, non-Gaussian system.

The ideas of information theory propounded by Shann
are very much akin to the ideas of statistical mechanics.
a signal made up of a sequence of letters~or field values!,
chosen from some alphabet~or range of values! one may
define a probability distribution,p(x), for the probability
that a particular letter takes the valuex. The amount
of information per letter in such a sequence is giv
by the entropy of this distribution;H(X)[H@p(x)#
04662
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52(xp(x)log p(x). If the logarithm is taken in base 2, thi
gives the amount of information per letter in bits. One way
understand this is to think of compressing a signal. Comp
sion involves removing redundancy in the signal~or alterna-
tively correlations between letters! and so increasing the
amount of information per letter. In this way, a signal wi
higher entropy will carry a higher density of information.

When one attempts to communicate via a channel, e
letter,x, of the input signal will be received as some letter,y,
at the output. Allowing for the uncertainty in the transmi
sion process, the output for an input,x, will be given by
some conditional distributionp(yux). For an information
theorist, this defines the channel of communication. For e
input letter, the output may take a range of values. The
tropy of this additional spreading at the output is given
the conditional entropy; H(YuX)5(xp(x)H(YuX5x)
52(xp(x)@(yp(yux)log p(yux)#.

When a sequence of letters is transmitted, the amoun
information in common between the input and output, oth
wise known as their mutual information, is given by the to
entropy of the output signal minus the additional entropy d
to signal distortion;

I ~X;Y!5H~Y!2H~YuX!. ~23!

When using a particular channel, the conditional distribut
p(yuX) is fixed and the remaining freedom is in the choice
input distributionp(x). The idea is that if certain letters ar
more distorted than others, it pays one to use them less
quently, even though this means a reduction in the amoun
information that the input signal can carry. The maximu
transmitted information density that can be achieved is gi
by functionally optimizing the mutual information over th
choice of input signal distribution;

C5max
p(x)

I ~X;Y!. ~24!

Shannon formulated these ideas rigorously and showed
this is not only an upper bound upon the rate of transmiss
of information, but it is also an achievable bound. A su
mary of these basics of information theory may be found
Ref. @2#. The functional optimization in Eq.~24! is carried
out under the various system constraints, such as the ave
signal power. In fact, the only case for which there exists
explicit analytical solution is when the joint distributions o
the input and output signals are Gaussian. In this case,
capacity is given by

C5 logF ^x* x&^y* y&

U^x* x& ^x* y&

^y* x& ^y* y&
UG . ~25!

When the signal is band limited, the corresponding expr
sions for the capacity per unit bandwidth, or the spec
efficiency, is given by integrating over frequency;
7-9
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c5
1

2pDE dv logF ^xv* x2v&^yv* y2v&

U^xv* x2v& ^xv* y2v&

^yv* x2v& ^yv* y2v&
UG . ~26!

The factor of 1/2p arises becausev is the angular frequency
conjugate tot.

We are now in a position to use these results from inf
mation theory, together with our knowledge of the quadra
and quartic statistics of the WDM system to obtain a low
bound and estimate of the capacity of the WDM optical co
munications system. A rigorous lower bound on the capa
of a channel defined by a conditional distribution,p(yux),
may be found as follows: The quadratic input-output sta
tics are calculated for a Gaussian input distribution. A ch
nel whose statistics are Gaussian and whose quadratic s
tics correspond to those of the actual channel, will ha
capacity given by Eq.~26!. This gives a lower bound on th
capacity of the actual channel. A proof of this is given in R
@10#. The basic idea behind it is that deviations from Gau
ian statistics correspond to extra correlations in the noise
the channel adds to the signal. These extra correlations a
one to make progress in determining which part of the
ceived signal is noise and which part is signal. Ignoring th
correlations— as one does in the Gaussian approximatio
leads one to underestimate the extent to which noise ma
removed from the signal and so to an underestimate of
system capacity. Notice that since a Gaussian distribu
maximizes the entropy for a fixed variance, any deviat
from Gaussianity will increase correlations.

We are interested in two ways of using the WDM optic
fiber system. In the first case, both the amplitude and ph
of the electrical signal are used to communicate. We call
coherent communication. In the second situation, only
amplitude of the electrical field is used to communicate. T
latter case is more representative of current optical com
nication systems. Coherent communication was conside
by Mitra and Stark in Ref.@10#. The quadratic statistics give
by Eq. ~4! are combined with Eq.~26! to give the following
expression for the spectral efficiency in terms of the sing
particle Green’s function of the channel:

c>E dv

2pD
log@11Pe f f~v!/Ne f f~v!#, ~27!

with the effective signal and noise powers given by

Pe f f~v!5Pu^Gd~v!&u2,

Ne f f~v!5P~12u^Gd~v!&u2!1N, ~28!

respectively. This result is a modification of the famous S
annon @1# result for the capacity of a linear channel wi
additive white noise, allowing for the conversion of sign
power to noise power by scattering from signals in the ot
subbands. The single-particle Green’s function calculate
Sec.IV,^Gd(L,v)}exp@2const3P2L# is substituted into Eq.
~28! to obtain the functional dependence of the capacity u
system parameters. The result is sketched in Fig. 5. There
two main features worthy of comment. The first is the pe
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in the capacity for a particular power; increasing the sig
power relative to the noise power is productive up to a po
but when the signal power is very large, nonlinear inter
tions between signals in the different subbands become
dominant mechanism of signal distortion. The appearanc
an optimal power is a common feature of the effects of n
linearity. It occurs in the Gordon-Haus jitter of solitons@4#
and in the nonlinear~or Gordon-Mollenauer! phase noise@5#
~see, for example, Ref.@12#!. The second feature worthy o
comment is the dependence of the capacity upon lengt
large distances. This is important, since it is for very lo
distance communication that propagation nonlinearities h
the most important effect. The Gaussian approximation
coherent communication gives a lower bound on capa
that decays exponentially with length at large distances.
do not expect this exponential decay to correctly reprod
the dependence of the system capacity, since it is in this l
that non-Gaussian corrections to the input-output statis
are likely to be most important. We will see below how ta
ing account of these non-Gaussian corrections is likely
change the dependence of capacity at large distances.

Unfortunately, there exist no rigorous bounds on the
pacity for incoherent communication in which the phase
the electric field is ignored. Nevertheless, expressions sim
to Eq. ~28! can provide useful estimates of the incohere
capacity. One such estimate is obtained by fitting an appr
mate Gaussian distribution of intensity about its mean val
@given by Eq.~4!# to the quadratic statistics of intensity give
by Eq. ~5!. The capacity of the channel with this Gaussi
distribution is an approximation to the capacity of the act
channel. It is given by

c'
1

2E dv

2pD

3 logS 11
P22puGd

II~v!u2/D

P2~122puGd
II~v!u2/D!12PN1N2D . ~29!

FIG. 5. Spectral efficiency vs input power: Plots of~a! Eq. ~26!,
solid line; ~b! Shannon formula,c5 log@11P/N#, short-dashed line;
~c! Eq. ~29!, long-dashed line.
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The prefactor of 1/2 arises because the intensity is a
field. In the limit of strong nonlinearity and large signal
noise ratio, Eq.~29! reduces toC'Ap/2De f fLi 3/2@P2/(P
1N)2#. This has an appealing interpretation. The effects
nonlinearity are contained entirely within a prefactor a
provide an effective bandwidthDe f f56DALD

2 /hLtot
3 . Our

analysis of jitter showed that XPM mainly introduces timin
errors and not amplitude error. The effective bandwidth
ters because signal pulses must be separated by more
the timing error in order to be distinguishable. The inform
tion carried by each pulse is determined by the additive no
power. Notice that in the limit of strong nonlinearity, th
coherent capacity has an exponential decay with len
whereas Eq.~29! has a power-law decay. The actual coher
capacity is greater than the incoherent capacity, sinc
greater number of degrees of freedom are used in cohe
communication. The behavior of Eqs.~28! and ~29! at large
powers points to limitations of the Gaussian approximati
A comparison of the coherent and incoherent capacity
shown in Fig. 5. The incoherent capacity shows a peak
some optimal power. This peak is at slightly higher pow
than that for the coherent capacity, because phase or tim
fluctuations are more sensitive to XPM than amplitude fl
tuations.

It seems plausible that it should be possible to express
capacity of a channel purely in terms of its multiple-ord
Green’s functions. Unfortunately, we do not have such
expression. Indeed, only for a channel that is entirely de
mined by its two-point~or single particle! Green’s function is
it possible to write down such an expression. In this case
channel is Gaussian and the result is Eq.~28! as obtained by
Shannon@1#. Obtaining such expressions would be a sign
cant contribution to the understanding of communication
nonlinear media. The bound on coherent communication
the estimate of capacity for incoherent communication giv
above give an indication of the importance of includi
higher-order Green’s functions. Vertex corrections to high
order Green’s functions determine the extent to which
channel has non-Gaussian statistics. Including these co
tions can dramatically modify the functional dependence
ones estimates of system performance upon system pa
eters.

VII. CONCLUSIONS

In conclusion, we have considered the impediments
communication caused by nonlinear interaction between
subbands of a WDM optical fiber system. These interacti
between subbands lead to non-Gaussian input-output s
tics. We have provided a simple characterization of th
non-Gaussian statistics in terms of vertex corrections
higher-order Green’s functions of the channel. Propaga
of light in the WDM system under the action of XPM
described by a Schro¨dinger equation with a spatially an
temporally random potential. This potential encodes the
fects of XPM. We have calculated the Green’s function
propagation in this channel using Feynman path-integral
diagrammatic techniques. In the case where the signal co
lations are approximated byd functions in time, these
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Green’s functions may be obtained in closed form. The re
shows a superdiffusive spreading of a signal pulse and o
arrival time. We have interpreted these results in terms of
amplitude and timing jitter of received pulses; both of whi
are standard measures of optical system performance.
find that the received signal pulse shows a superdiffus
spreading of its distribution of arrival times;^t2&}L3. Fi-
nally, we have used the results to obtain lower bounds
estimates of the capacity of the WDM system. These
based upon the Shannon result for the capacity of a Gaus
channel. In the case of coherent communication, they lea
a strict lower bound upon the capacity. In the case of in
herent communication, where only the signal amplitude a
not its phase is used for communication, we obtain an e
mate of the system capacity. The different dependence
our estimates of capacity for coherent and incoherent c
munication at large distances, exponential and power-l
respectively, show the importance of accounting for the n
Gaussian nature of the channel.

APPENDIX: CALCULATION OF AMPLITUDE
FLUCTUATIONS

The results contained in Eqs.~22! may be derived using
rules for the composition

E dt8G~x1 ,x8;t1 ,t8!G~x8,x2 ;t8,t2!5G~x1 ,x2 ;t1 ,t2!,

~A1!

unitarity,

G~x50;t1 ,t2!5d~ t12t2!, ~A2!

and time reversal

G* ~x1 ,x2 ;t1 ,t2!5G~x2 ,x1 ;t2 ,t1! ~A3!

of the Green’s function for a particular realization of th
potential,V(x,t). These properties of the Green’s functio
may be confirmed by considering the path-integral formu
tion, Eq. ~6!.

Using these relations, the first of Eqs.~22! may be de-
duced by the following series of manipulations:

^Eout~ t !&5 K AE dt8G~ t,t8!1n~ t !L
5AK E dt8G~ t,t8!L
5A^G~v50!&.

This is nothing more than the average of Eq.~3!. The second
of Eqs.~22! requires a few more manipulations;
7-11
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^uEout~ t !u2&5A2K E dt1dt2G~ t,t1!G* ~ t,t2!L 1^un~ t !u2&1AK n~ t !E dt1G* ~ t,t1!L 1AK n~ t !* E dt1G~ t,t1!L
5A2E dtdt1dt2G~ t,t1!G* ~ t,t2!/d~0!1Nd~0!

5A2E dtdt1dt2G~0,0;t2 ,t1!/d~0!1Nd~0!

5A2E dtdt1dt2d~ t12t2!/d~0!1Nd~0!

5~A21N!d~0!.

We have used Eq.~A3! in moving from the first to second line, followed by Eqs.~A1! and~A2! moving between lines two and
three and three and four, respectively. We have also used the fact that the averages over the noise and over the po
temporally invariant. the third of Eqs.~22c! may be deduced as follows:

^duEout~ t !u2duEout~ t !u2&5^uEout~ t !u2uEout~ t !u2&2^uEout~ t !u2&2

5A4E dt1dt2dt3dt4^G* ~L;t,t1!G* ~L;t,t2!G~L;t,t3!G~L;t,t4!&

14NA2E dt1dt2^G* ~L;t,t1!G~L;t,t2!&1@2N22~A21N!2#d~0!2

'A4E dt1dt2dt3dt4^G* ~L;t,t1!G~L;t,t3!&^G* ~L;t,t2!G~L;t,t4!&1@N~2A21N!2A4#d~0!2

'A4F E dtdt1dt2^G* ~L;t,t1!G~L;t,t3!&/d~0!G2

1@N~2A21N!2A4#d~0!2'N~2A21N!d~0!2.

The third line is simply a rearrangement of the various terms arising after substitution of Eq.~3!. A complete calculation of the
first term in this expression requires evaluation of the four-particle Green’s function. We do not carry out this calculatio
Instead we make the approximation discussed in the text and ignore vertex corrections. This approximation is embod
step between the third and fourth lines. In moving to the fifth line, we have used the fact that the average over the n
random potential leads to temporally invariant expressions. We may then use Eqs.~A1!–~A3! in the same way as before i
order to derive our final result.
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